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Analysis of patterns in time (APT) is a method for gathering informa- 
tion about observable phenomena such thatprobabilities of temporalpat- 
terns of events can be estimated empirically. If appropriate sampling 
strategies are employed, temporal patterns can be predicted from APT 
results. As an example of the fruitfulness of APT, it was discovered in 
a classroom observational study that elementary students were on task 
97% of the time if some form of direct instruction was occurring also, 
whereas they were on task only 57% of the time during nondirect instruc- 
tion. As a second example, APT results were used as a rule base for an 
expert system in adaptive computer-based testing. When two different 
computer tests were studied, average samples of 9 and 13 test items were 
required to make mastery and nonmastery decisions when items were 
selected at random. These decisions were, respectively, 94% and 98% 
accurate compared to those reachedfrom two much larger test item pools. 
Finally, APT is compared to the linear models approach and event history 
analysis. The major difference is that in APT there is no mathematical 
model assumed to characterize relations among variables. In APT the 
model is the temporal pattern being investigated. 
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Analysis of Patterns in Time 

ducational measurement and statistical analysis of results historically 
have tended to follow a pattern where variables are measured sep- 

arately and then a mathematical model is chosen to portray the relation- 
ship among the variables. Most often a linear models approach (LMA) has 
been adopted, such as analysis of variance, multiple regression analysis, 
discriminant analysis, path analysis, time series analysis, and so on. The 
LMA can be characterized as follows: Measure variables separately, then 
relate them mathematically (Frick, 1983). 

In the past two decades alternative research methodologies have gained 
attention in the educational research community (cf. Guba & Lincoln, 1981; 
Maccia & Maccia, 1976). One such method of collecting and analyzing evi- 
dence to help answer educational research questions is analysis of patterns 
in time (APT).1 This alternative view might be characterized as follows: 
Measure temporal relations directly by counting their occurrences (Frick, 
1983). APT requires a subtle but significant shift in one's world view, com- 
pared to that often taught in educational measurement and statistics 
courses. 

An educational researcher with an APT world view is comparable to 
an epidemiologist who observes that middle-aged persons who take a small 
dosage of aspirin daily are subsequently less likely to suffer a heart attack 
than those who do not. Another example of an APT world view is a 
baseball manager who observes how often each player has hit safely against 
left-handed pitchers when runners are in scoring position. In both cases 
temporal patterns are observed and enumerated rather than estimating beta 
weights for regression analysis or means for ANOVA, as could be done 
in the LMA. 

Knowledge of likelihoods of temporal patterns can be used to predict 
subsequent events and aid decision makers, for example, for forecasting. 
Although temporal patterns do not necessarily indicate causal relationships, 
such patterns may provide good leads to further experimental research. 

I have formalized analysis of patterns in time through adoption of fun- 
damental concepts from information theory, set theory, and probability 
theory. This formalization was also influenced by the SIGGS Theory Model 
developed by Maccia and Maccia (1966). Before describing this formaliza- 
tion, I will present an example of the fruitfulness of an APT view. The 
explication of APT is followed by another example and a discussion in 
which major extant methodologies are compared to APT. 

An Example of APT Results 
From a Classroom Observational Study 

I originally conceived of APT in the mid-1970s as a methodology of 
classroom observational research to investigate patterns of transactions 
among students, teachers, curricula, and educational settings. As predicta- 
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ble patterns are discovered, these can contribute to pedagogical knowl- 
edge and perhaps lead to better pedagogical theory. 

APT principles were applied to the design of a classroom observa- 
tion system for investigating academic learning time of handicapped 
students (Frick & Rieth, 1981). In this system numerous classifications were 
used, including types of instructional groupings, student task success, sub- 
ject matter, types of instructional activities, student task engagement, and 
types of instructor behaviors (questions, feedback, explanations, etc.). 

Observational data were collected on 25 mildly mentally handicap- 
ped students and their teachers as part of a study of academic learning 
time and student achievement (Rieth & Frick, 1982). Students were ob- 
served a total of 8 to 10 hours each at different times during the school 
day over a period of about 6 months. Using the Academic Learning Time 
Observation System (ALTOS) (Frick & Rieth, 1981), highly trained 
observers collected observational data on paper-and-pencil coding forms. 
During mathematics and language arts activities observers coded target 
student and instructor behaviors at 1-minute intervals. 

For illustration, only two classifications (with categories in paren- 
theses) are discussed: available instruction (direct, nondirect, null), and 
student orientation to academic instruction (engaged, nonengaged, null). 

The kind of available instruction was viewed from the point of the 
target student: Direct instruction was defined as academic transaction with 
the target student or a group of students of which the target student is 
a member during an educational activity. From the point of view of a target 
student, the source of direct instruction could be the teacher, another per- 
son in the class, such as a peer or an aide, or something capable of send- 
ing information to and receiving information from the student (e.g., a 
computer-based instructional program). If there was no academic transac- 
tion with the target student or group containing the student during an 
academic educational activity, then the type of available instruction was 
considered to be nondirect. If no academic educational activity was oc- 
curring, then available instruction was coded as null. 

The observers also coded the type of target student orientation to 
academic instruction that was occurring simultaneously with the type of 
available instruction. The target student was considered to be engaged 
in an academic activity if she or he appeared to be attending to the 
substance of that activity. If the student clearly was not attending to the 
academic substance (e.g., off-task behavior), he or she was coded as 
nonengaged. If the student was participating in a nonacademic activity, 
null was coded. 

Due to insufficient funds and lack of truly portable computers at the 
time of the study (1981 - 1983), paper-and-pencil coding forms were used, 
and point-time sampling of classroom events was done at 1-minute inter- 
vals. Therefore, true sequential patterns of interaction could not be quan- 
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tified. APT time measure functions, however, could be applied to nearly 
15,000 one-minute samples collected on all 25 students. (See Frick, 1983, 
1988, for counting rules for time measure functions, frequency measure 

functions, joint occurrence, sequential occurrence, etc.) 
Results of these time measure functions for the 25 systems are 

presented in Table 1. Each system consisted of the target student and his 
or her classroom environment(s) and teacher(s). Some target students spent 
time in a special or resource classroom and in a regular elementary 

Table 1 
Results From APT Time Measure Functions in the 

Academic Learning Time Study 

Proportion of time 

S DI EN DI n EN DI n NE ND n EN ND n NE ENIDI EN|ND 

1 0.50 0.80 0.46 
2 0.39 0.49 0.37 
3 0.27 0.56 0.26 
4 0.34 0.69 0.34 
5 0.48 0.73 0.47 
6 0.40 0.75 0.39 
7 0.44 0.84 0.40 
8 0.36 0.75 0.33 
9 0.30 0.67 0.29 

10 0.32 0.71 0.31 
11 0.42 0.68 0.42 
12 0.38 0.84 0.37 
13 0.31 0.63 0.31 
14 0.54 0.87 0.52 
15 0.81 0.92 0.81 
16 0.67 0.77 0.62 
17 0.24 0.76 0.24 
18 0.34 0.74 0.34 
19 0.59 0.87 0.58 
20 0.52 0.64 0.48 
21 0.62 0.83 0.58 
22 0.23 0.65 0.22 
23 0.29 0.79 0.28 
24 0.54 0.75 0.52 
25 0.51 0.82 0.50 

Mean 0.432 0.741 0.416 
SD 0.144 0.101 0.139 

0.04 
0.02 
0.01 
0.00 
0.01 
0.01 
0.04 
0.03 
0.01 
0.01 
0.00 
0.01 
0.00 
0.02 
0.00 
0.05 
0.00 
0.00 
0.01 
0.04 
0.04 
0.01 
0.01 
0.02 
0.00 

0.34 
0.12 
0.30 
0.35 
0.25 
0.35 
0.44 
0.42 
0.39 
0.40 
0.26 
0.47 
0.32 
0.36 
0.11 
0.15 
0.52 
0.40 
0.29 
0.16 
0.25 
0.43 
0.51 
0.23 
0.31 

0.16 
0.49 
0.43 
0.31 
0.26 
0.25 
0.11 
0.22 
0.32 
0.29 
0.31 
0.15 
0.37 
0.11 
0.08 
0.18 
0.24 
0.25 
0.12 
0.33 
0.13 
0.34 
0.20 
0.24 
0.18 

0.92 0.67 
0.95 0.20 
0.97 0.41 
1.00 0.53 
0.98 0.49 
0.98 0.59 
0.91 0.80 
0.92 0.65 
0.96 0.55 
0.98 0.56 
0.99 0.46 
0.97 0.75 
1.00 0.46 
0.97 0.77 
1.00 0.57 
0.93 0.45 
1.00 0.69 
0.99 0.61 
0.99 0.71 
0.93 0.33 
0.94 0.66 
0.97 0.56 
0.97 0.71 
0.97 0.49 
0.99 0.63 

0.015 0.324 0.243 0.967 0.573 
0.015 0.114 0.104 0.029 0.142 

Note. S = system; DI = direct instruction; EN = student engagement; ND = nondirect 
instruction; NE = student nonengagement. 
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classroom, but this was taken as one system for each target student.) For 
each system, data were aggregated using APT time measure functions. For 
example, in system 1, direct instruction was made available to the target 
student 50% of the time. That student was engaged 80% of the time 
overall. The joint occurrence of direct instruction and student engagement 
occurred 46% of the time, and so on. The proportion of engagement, given 
that direct instruction was occurring at the same time was 0.92 for that 
student, whereas the student was engaged only 67% of the time during 
nondirect instruction. 

Perhaps the most important finding across the 25 systems was the 
very high proportion of student engagement during direct instruction 
(0.967), compared to engagement during nondirect instruction (0.573). 
In other words, students were about 13 times more likely to be off task 
during nondirect instruction than during direct instruction. 

The linear correlation between direct instruction and student engage- 
ment was about 0.57, and although significant at the 0.05 level, the linear 
model does not reveal the clear pattern indicated by the APT time measure 
functions for joint events. Although we cannot infer that direct instruc- 
tion causes high student engagement, we can nonetheless predict that, if 
direct instruction is occurring, the probability of mildly handicapped stu- 
dent engagement in the elementary grades is extremely high. This rela- 
tionship was not anticipated before the study. The pattern was consistent 
across different kinds of settings and subject matter areas. What caught 
the investigators' eyes was the consistently low amount of joint occur- 
rences of direct instruction and student nonengagement compared to 
nonengagement and nondirect instruction. 

Analysis of Patterns in Time 

APT is based on set theory, information theory, and probability theory 
(cf. Frick, 1983, 1988; Maccia & Maccia, 1966). In set theory a relation 
is taken as a subset of the Cartesian product of two or more sets of 
elements. A relation is thus a set of ordered pairs if two sets are in the 
Cartesian product, or more generally a set of n-tuples if more than two 
sets are involved. Each n-tuple symbolizes the specific joining of elements. 
In information theory, categories in a classification are analogous to 
elements in a set with the added condition that categories are mutually 
exclusive and exhaustive. By taking information as a characterization of 
occurrences, observed events or states of affairs can be mapped into 
categories in classifications (Maccia & Maccia, 1966). 

An H measure traditionally has been used in information theory to 
indicate the uncertainty in the probability distribution derived from observ- 
ed occurrences of categories in a single classification (cf. Coombs, Dawes, 
& Tversky, 1970). Uncertainty is zero when the probability of a particular 
category is one and all other categories have zero probabilities. Uncer- 
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tainty is maximum when each category is equally likely to occur. 
A T measure in information theory has been used to indicate transmis- 

sion of information. A T measure can be determined from the joint prob- 
ability distribution derived from observations of paired event occurrences 
characterized by the Cartesian product of the classifications. 

When time of occurrence of observed events is considered as well, 
such a mapping represents a temporal pattern for each of the n-tuples of 
categories. Maccia & Maccia (1966) recommended T as a measure of system 
feed in and feed out, that is, for transmission of information from a 
negasystem to a system and vice versa. It is patent that H and T are inap- 
propriate for measuring uncertainty of particular temporal patterns 
represented by each of the n-tuples. Instead, the probability of occurrence 
of the nth element of a temporal pattern (n-tuple) can be estimated by 
simply observing how often it occurs following occurrences of preceding 
elements. Although H and T measures can be determined also, they are 
not essential to APT. 

To illustrate basic APT concepts and procedures, an example from 
observation of the weather is discussed first. In Figure 1 an APT score de- 
rived from observation of the weather is presented. This score is analogous 
to the notation by someone who listens to an orchestra playing and writes 
the different parts as they are heard, using traditional staffs and musical 
notation (i.e., recreates the musical score). 

The classifications used in Figure 1 are those that an amateur 
meteorologist might use to characterize occurrences of weather: cloud 
structure, precipitation, atmospheric pressure, air temperature, and season 
of year. Each classification consists of a set of mutually exclusive and ex- 
haustive categories. At any point in time, one and only one category may 
be used to characterize the current state of a classification in APT. For ex- 
ample, if the season of year is categoried as spring at some point, then 
it cannot be winter, summer, or fall at the same time. 

Classifications for the observation system used in Figure 1 and their 
categories (in parentheses) are as follows: cloud structure (cumulus, nim- 
bus stratus, nimbus cumulus, cirrus, null); precipitation (rain, sleet, snow, 
null); atmospheric pressure (above 30, below 30 (p.s.i),, null); air 
temperature (- 50?F, - 49?F, . . ., 119?F, 120?F, null); and season of year 
(winter, spring, summer, fall, null). 

The task of an observer who is creating an APT score is to characterize 
simultaneously the state of each classification as events relevant to the 
classifications change over time. To help simplify the task for an observer, 
he or she only need note when there is a category change in a classifica- 
tion and the time the change occurs-for example, the precipitation 
changes from rain to sleet at 9:38:18 a.m., or the cloud structure overhead 
changes from nimbus stratus to null at 12:23:38 p.m. 

When the observation begins, the state of each classification is noted 
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Oo ClassiJ 
C\ 

T 

CS 

p 

AP 

AT 

SOY 

fication Categorization of Event Changes 
7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 

cirrus . ... . ..... nimbus-stratus ..................................................................null..... 
7:21:48 8:24:15 12:23:38 

null.............................rain .......sleet.. snow .............sleet.. rain...........null.............. 
7:21:48 9:06:49 9:38:18 10:42:19 11:46:06 

9:58:16 11:01:59 

above 30.. below 30 3............ .......................................above 30.... 
7:21:48 7:46:18 12:08:11 

33?F ..... .... ... ..... ... 32?F ...31?F ....32?F... 33?F.. 34F . .............. 35?F..36?F 
7:21:48 9:20:03 9:46:15 10:15:222 12:10:48 

10:35:29 12:48:12 
10:49:41 

winter ................... ............................................................................... 
7:21:48 

Figure 1. An APT score resulting from observation of the weather 
Note. *T: Time (HH:MM); CS: Cloud Structure; P: Precipitation; AP: Atmospheric Pressure; AT: Air Temperature; SOY: Season of Year. 
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along with the time. As can be seen in Figure 1, at 7:21:48 a.m. the cloud 
structure is cirrus, precipitation is null, atmospheric pressure is above 30 
(p.s.i.), air temperature is 33?F, and the season is winter. The observer 
waits until there is a change in one or more classifications before record- 
ing further. For example, in Figure 1 the first change observed was at 
7:46:18 a.m. when the atmospheric pressure dropped to below 30 (p.s.i.). 
The next change was at 8:24:15 a.m. when the cloud structure directly 
overhead changed to nimbus stratus. The precipitation changed to rain 
at 9:06:49 a.m., the air temperature dropped to 32?F at 9:20:03 a.m., the 
precipitation changed to sleet at 9:38:18 a.m., and so on. 

Notice that during the observation the season of year never changed. 
After recording that the season of year was winter at the beginning of the 
observation, no further changes were recorded in that classification. Also 
notice that each classification has a null category, meaning that there is 
nothing occurring that is relevant to the classification to characterize at 
that point in time. 

By scanning across an APT score, the sequence of changes within and 
among classifications can be seen. If one scans vertically at some point 
in the APT score, the joint occurrence of categories in different classifica- 
tions can be observed. For example, at 10:30 a.m. the state of affairs is 
that cloud structure is nimbus stratus, precipitation is snow, atmospheric 
pressure is below 30, air temperature is 32 ?F, and season of year is winter. 
The joint occurrence of categories from different classifications is 
analogous to musical harmony, and more specifically to the variety of or- 
chestral sounds that occur when the various timbres of different groups 
of simultaneously played instruments are combined. 

An APT score is an observational record. The notion of a score in 
APT is different from the conventional usage of score, such as the score 
in a soccer match or a student's score on an achievement test. In APT a 
score is the temporal configuration of observed events characterized by 
categories in classifications (e.g., see Figure 1). The notion of a score in 
APT is akin to that of a musical score. In APT it is as if someone like Mozart 
heard a group of musicians playing and was able to write out the score 
as he was listening. 

Making Queries About APT Scores 
We could be satisfied by studying APT scores, looking for recurring 

patterns or combinations of events, and making further note of them. If 
we are interested in quantification, we can count, for example, how many 
times a particular consequent event follows a particular antecedent event; 
or we can aggregate durations of certain kinds of events to see what pro- 
portion of the overall time they occupy. For example, we might ask, How 
often or what proportion of the time is it the case that 
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1. precipitation is rain? 
2. if atmospheric pressure is above 30, 

then precipitation is rain or sleet or snow? 
3. if cloud structure is nimbus stratus 

and atmospheric pressure is below 30, 
then precipitation is sleet or snow? 

4. if air temperature is 32 F or 33 F or 31?F 
and atmospheric pressure is below 30 
and season of year is winter, 

then precipitation is sleet or snow? 
5. if atmospheric pressure is above 30, 

then atmospheric pressure is below 30 
and cloud structure is nimbus-stratus, 

then precipitation is not null? 

In APT, questions such as these are referred to as queries. Given a 
query, an APT score is scanned such that instances and durations of the 
specified pattern are aggregated. For example, if these queries are made 
about information in the APT score illustrated in Figure 1, the results 
displayed in Table 2 obtain. 

Notice that the results of APT queries are given according to phrases 
in each query. Query 1 has one phrase; 2, 3, and 4 have two phrases; 5 
has three phrases. Each phrase is terminated with a comma, and the last 
phrase of a query ends with a question mark. 

Aggregate data are reported by APT query phrase. For example, the 
first and only phrase in query 1 was found in the score to be true 2 out 
of 5 times. This means that the precipitation changed to rain twice out 
of the 5 recorded instances of precipitation changes. Given these data, 
the likelihood of a change to rain is 2/5, or 0.40. The total duration in 
which this phrase was true was 4,536 seconds out of the 19,584 seconds 
of observation (length of the APT score). Rain occurred 23.2 % of the time 
(4,536 x 100/19,584). Note that null codes are not counted when deter- 
mining frequency of changes in a classification, but are taken into con- 
sideration for duration of categories. For example, the null code in the 
precipitation classification at 11:46:06 a.m. indicates that the rain that began 
at 11:01:59 has stopped. 

Query 2 is a two-phrase query. The first phrase, "atmospheric pressure 
is above 30," was found to be true in the APT score in two out of three 
changes. If a query phrase in APT begins with the key word then, it can 
be true in the data only if the preceding phrase has first become true. No 
instances of the second phrase, "then precipitation is rain or sleet or snow?" 
were found to be true in the data, given that the first phrase was true. 
Although the sample is relatively small to make any generalizations here, 
if the pattern specified by query 2 obtained across many samples, then 
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Table 2 
Results of APT Queries About the Score Illustrated in Figure 1 

Query Frequency Likelihood Time (in seconds) % time 

(a) Precipitation is rain? 
2 out of 5 0.40000 4,536 out of 19,584 

(b) If atmospheric pressure is above 30, 
2 out of 3 0.66667 

then precipitation is rain or sleet or snow? 
0 out of 0 No data 0 out of 19,584 

(c) If cloud structure is nimbus stratus 
and atmospheric pressure is below 30, 

1 out of 5 0.20000 
then precipitation is sleet or snow? 

3 out of 5 0.60000 5,021 out of 19,584 

(d) If air temperature is 32?F or 33?F or 31?F 
and atmospheric pressure is below 30 
and season of year is winter, 

5 out of 10 0.50000 
then precipitation is sleet or snow? 

3 out of 4 0.75000 1,945 out of 19,584 

(e) If atmospheric pressure is above 30, 
2 out of 3 0.66667 

then atmospheric pressure is below 30 
and cloud structure is nimbus stratus, 

1 out of 3 0.33333 
then precipitation is not null? 

5 out of 5 1.00000 9,557 out of 19,584 

23.16177 

0.00000 

25.63828 

9.93158 

48.80004 

these results could be used to make predictions about the weather. That 
is, if the barometric pressure is above 30 pounds per square inch, the 
likelihood of subsequent rain, sleet, or snow would be very low. 

Query 3 also has two phrases. The first phrase contains two phrase 
segments connected by the conjunction and. For a multisegment phrase 
to become true in the data, all segments must be found to be true, although 
the temporal order in which these segments occur is irrelevant. Only when 
all segments in a phrase have become true in the data do we look for in- 
stances of the next phrase. Given the data in Figure 1, 3 out of 5 changes 
in precipitation were either sleet or snow, after it was first true that the 
cloud structure was nimbus stratus and it was true that the atmospheric 
pressure was below 30. 

Query 4 has two phrases, and the first indicates an even more com- 
plex antecedent condition must obtain. Query 5 illustrates a three-phrase 
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query. First, it must be true in the data that atmospheric pressure is above 
30. Next, it must be true that atmospheric pressure changes to below 30 
and cloud structure becomes nimbus stratus (or vice versa). Only when 
the first two phrases have become true, in the order specified, do we look 
for instances of the third phrase. It so happens in these data that precipita- 
tion was not null in five out of five changes. If this pattern were to obtain 
across numerous samples of weather observation, then we would predict 
that some kind of precipitation is highly likely following a change in baro- 
metric pressure from above 30 p.s.i. to below 30 p.s.i. in combination 
with the appearance of nimbus stratus clouds. Of course, we would be 

extremely cautious here, due to a very small sampling of weather 
occurrences. 

See Frick (1983, 1988) for further information on query syntax, count- 
ing rules, and computer software logic to aid in the process of data col- 
lection and analysis. The brief examples just described illustrate most of 
the basic features of APT, but do not deal with complexities of longer 
queries or the issue of recursive queries in which different phrases indicate 
the same classifications. 

A Second Example: 
APT and Adaptive Computer-Based Testing 

Frick, Plew, and Luk (1989) have been researching an expert systems ap- 
proach to computer-based testing that builds on APT conceptions. In 
essence, the results of APT queries are stored in a computer data base as 

expert systems rules with associated probabilities. This information is used 
by a computer-based testing system to make mastery and nonmastery deci- 
sions about students taking a test. 

The most prevalent extant method of adaptive testing is based on item 
response theory (IRT) (cf. Lord & Novick, 1968; Weiss & Kingsbury, 1984). 
This method has been shown to be effective in estimating examinee ability 
with selection of a subset of items that match his or her ability level (Weiss 
& Kingsbury, 1984). One limitation of IRT-based adaptive testing is that 
a very large sample of examinees (from 200 to 1,000, depending on 
whether the one-, two-, or three-parameter mdoel is chosen) must be tested 
in advance to obtain reasonably accurate estimates of item parameters used 
in the decision functions. 

Clearly, the IRT approach is not practical unless one has access to 
large samples of examinees as do many testing bureaus. Frick, Plew, and 
Luk (1989) have invented an alternative approach, termed EXSPRT, which 
apparently requires many fewer examinees (a minimum of 50) to develop 
an initial APT-generated rule base. 

An Example of EXSPRT 

Suppose that we have developed a pool of test items that matches a par- 
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ticular instructional objective and that our goal is to decide whether or 
not a particular student has mastered that objective (e.g., Mager, 1973). 
Suppose further that our aim is to administer no more questions than are 
necessary to reach a mastery or nonmastery decision, and yet we want 
to be highly confident in our decision. 

First, we need to construct a rule base. There are various ways that 
this could be done, but let us use a straightforward empirical approach. 
We obtain a sample of students representative of those who would be likely 
to be learning the instructional objective, who are learning, and who have 
learned (e.g., third-grade students and multiplication of two-digit numbers; 
college freshmen taking a course in probability theory; graduate students 
in education learning how computers work). 

Next, we give the whole test to this sample of students. We must then 
decide on a cutoff score for determining mastery and nonmastery. Sup- 
pose we are satisfied that anyone who scores 85% or higher on the test 
has minimally mastered the instructional objective being tested. This allows 
us to sort students into a mastery group and a nonmastery group. We now 
construct a rule set for each test item. For example (these are fictitious 
data, used for illustration only): 

Rule 1.1. If achievement status is mastery and item number is 1, then 
student answer is correct: APT probability = 0.92. 

Rule 1.2. If achievement status is mastery and item number is 1, then 
student answer is incorrect: APT probability = 0.08. 

Rule 1.3. If achievement status is nonmastery and item number is 
1, then student answer is correct: APT probability = 0.47. 

Rule 1.4 If achievement status is nonmastery and item number is 1, 
then student answer is incorrect: APT probability = 0.53. 

A quadruplet of such rules can be constructed for each item on the 
test, based on the proportions of masters and nonmasters, respectively, 
who answered the item correctly and incorrectly. We will assume that 
our student sample is large enough and representative enough of the 
population of those students of interest that we have sufficient confidence 
in the data used to derive the rules. The rules can be more conveniently 
summarized in tabular format. Some hypothetical data are provided below: 

Item P(m n q-oc) P(m n q-i) P(n n q-c) P(n n q-i) 

1 0.92 0.08 0.47 0.53 
23 0.81 0.19 0.24 0.76 
38 0.98 0.02 0.86 0.14 
63 0.89 0.11 0.65 0.35 

where m = mastery, n = nonmastery, q = question, c = correct, and 
i = incorrect. 
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Now, we will use the rule base to decide the mastery status of a par- 
ticular student about whom we presently know nothing with respect to 
mastery or nonmastery of the instructional objective assessed by the test 
items. Therefore, our prior probabilities of mastery and nonmastery are 
equal to 0.50 for this student. 

Observation 1. We randomly select an item from the pool (#63). We 
administer it to this student, who answers it incorrectly. Our expert systems 
inference engine will reason according to Bayes' theorem as follows (cf. 
Schmitt, 1969): 

Prior Probability of 
probability Alternative Joint Posterior 

Alternative of alternative and #63-- i probability probability 

Mastery 0.50 x 0.11 = 0.055 Sum = 0.239 

Nonmastery 0.50 x 0.35 = 0.175 Sum = 0.761 
Sum = 0.230 

The prior probability of each alternative is multiplied by the probability 
of the observation, given that the alternative is true. The estimated APT 

probability of an incorrect response by a master for item #63 is 0.11, which 
when multiplied by 0.50 yields a joint probability of 0.055. Similarly, the 
estimated APT probability of an incorrect response by a nonmaster for 
item #63 is 0.35, and when multiplied by the prior probability of non- 
mastery (0.50), results in a joint probability of 0.175. The joint probabilities 
are normalized by dividing each by the sum of the joint probabilities. After 
this observation, the posterior probability for mastery is now 
0.055 - 0.23 = 0.239. The posterior probability for the nonmastery alter- 
native is 0.175 - 0.23 = 0.761. At this point, the nonmastery alternative 
is about three times more likely than the mastery alternative. 

Observation 2. We continue testing by selecting another item at 
random from the pool. We give item #23 to the student, who answers 
it correctly. We update as follows, only this time we use the most recent 
posterior probabilities as our new priors: 

Prior Probability of 
probability Alternative Joint Posterior 

Alternative of alternative and #23-- c probability probability 

Mastery 0.239 x 0.81 = 0.194 +Sum = 0.515 

Nonmastery 0.761 x 0.24 = 0.183 + Sum = 0.485 
Sum = 0.377 

This time in the third column we use the probability of a correct response 
to item #23, given each alternative. The odds of nonmastery to mastery 
have now become about equal, given the two observations made thus far. 
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Observation 3. This time we select at random item #1, which the stu- 
dent answers incorrectly. We update, as before, using the most recent 
posterior probabilities as our new priors. 

Prior Probability of 
probability Alternative Joint Posterior 

Alternative of alternative and #01 - i probability probability 

Mastery 0.515 x 0.08 = 0.041 Sum = 0.138 
Nonmastery 0.485 x 0.53 = 0.257 - Sum = 0.862 

Sum = 0.298 

The odds are a little over 6 to 1 in favor of nonmastery at this point. 
Observation 4. We select another item, #38, at random, which our 

student also misses. 

Prior Probability of 
probability Alternative Joint Posterior 

Alternative of alternative and #38-" i probability probability 

Mastery 0.138 x 0.02 = 0.003- Sum = 0.024 

Nonmastery 0.862 x 0.14 = 0.121 + Sum = 0.976 
Sum = 0.124 

After the fourth observation, the posterior probability of the nonmastery 
alternative is about 0.98, roughly 40 times as great as the probability that 
the mastery alternative is true. Should we stop the test now? If so, on what 
basis? It appears that it is extremely likely that this particular student is 
a nonmaster, given just four test items, selected at random from the pool, 
given the response pattern (#63 wrong, #23 right, #1 wrong, #38 wrong), 
and given the Bayesian reasoning methods we have been employing. 

The decision as to when to terminate the test depends on how will- 
ing we are to make false mastery and false nonmastery decisions (type I 
and II errors). A type I error, a, is the probability of choosing mastery 
when the nonmastery alternative is really true. A type II error, 3, is the 
probability of choosing the nonmastery alternative when the mastery alter- 
native is really true. Most expert systems do not contain statistically based 
stopping rules. However, we can adopt the rules developed by Wald (1947) 
for the Sequential Probability Ratio Test (SPRT). 

Stopping rule 1. If the ratio of the posterior probabilities of the two 
alternatives (mastery vs. nonmastery) derived from Bayes's theorem is 
greater than or equal to (1 - p) a- , then stop making observations and 
choose the first alternative (mastery in this context). 

Stopping rule 2. If the ratio of the posterior probabilities of the two 
alternatives (mastery vs. nonmastery) derived from Bayes's theorem is less 
than or equal to Pf + (1 - a), then make no more observations and choose 
the second alternative (nonmastery). 
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Continuation rule. If the ratio of the posterior probabilities of the 
two alternatives is neither greater than or equal to (1 - f3) - a, nor less 
than or equal to f1 + (1 - a), then take a new observation, update the 
posterior probabilities using Bayes's theorem, and apply the three rules 
once again. 

Suppose that we set a = 13 = 0.05. The threshold for the first rule 
is(1 - 0.05) + 0.05 = 0.95 + 0.05 = 19. The threshold for the second 
rule is 0.05 - (1 - 0.05) = 0.053. During these observations, the first 
three result in posterior probability ratios that fall between the two 
thresholds. The ratio of the posterior probabilities after the fourth obser- 
vation, however, is 0.024 + 0.976 = 0.025, which is less than 0.053, the 
threshold for stopping rule 2. Therefore, we would conclude that the 
student is a nonmaster, knowing that we would tend to be wrong about 
5% of the time, because we set (3 a priori at 0.05. 

In summary, this example illustrates how data-based decision mak- 

ing can be made by a computer-based testing system, using expert systems 
reasoning-in particular, Bayesian reasoning-and rule quadruplets that 
were constructed from APTs of data derived from testing a representative 
sample of students who are masters and nonmasters. In effect, this ap- 
proach combines Bayesian reasoning, with APT-derived probabilities of 
patterns for the rule base, and SPRT stopping rules. I (Frick, (1989) sug- 
gested this approach as a response to the criticism of the SPRT, in which 
all items are treated as if they were equally difficult. Although I 
demonstrated that the SPRT has high predictive validity-if used conser- 

vatively (small a's and P's)-and that test lengths can be kept fairly short 
(about 20 items on the average), the SPRT still requires choosing both a 
mastery and nonmastery level a priori. The wider the gap between the 
two levels, the shorter tests tend to be, and tests that are too short might 
be expected to result in more decision errors. 

Empirical Validation of the EXSPRT 

The new approach, which combines both expert systems and SPRT prin- 
ciples, is called EXSPRT. To investigate initially the predictive validity of 
this approach, extant computer-based test data were reanalyzed using APT 
queries such as, If student achievement status is mastery and test item pool 
is DAL test and item number is 25, then student answer is correct? Two 
test item pools were available: (a) DALTEST, a 97-item test on the struc- 
ture and syntax of the Digital Authoring Language (53 administrations), 
and (b) COMTEST, an 85-item test on basic computer literacy and how 
computers functionally work (104 administrations). 

Each set of test results was originally stored in a data base on an item 
by item basis, in the randomly selected order they were administered to 
an examinee. It was therefore possible to retroactively apply the EXSPRT 
with APT-derived rule bases generated from 50 randomly selected ad- 
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ministrations of each test item pool, and compare the EXSPRT decision 
outcomes with those reached by administration of the entire tests. Reverse 
APT queries were made, because we wanted to predict backward in time. 
In essence, the APT score is turned upside down to make a reverse query. 
Results of such queries about temporal patterns are determined by 
searching the data starting at the end and working toward the beginning 
of the APT score. Results were as follows: 

1. If total test decision is mastery 
and test item pool is DAL test, 

25 out of 53 
then EXSPRT decision is mastery? 
24 out of 25, likelihood = 0.960. 

2. If total test decision is nonmastery 
and test item pool is DAL test, 

28 out of 53 
then EXSPRT decision is nonmastery? 
26 out of 28, likelihood = 0.929. 

If we combine the results from queries 1 and 2, the EXSPRT correctly 
predicted mastery and nonmastery decisions, based on the entire 97-item 
test, on 50 out of 53 administrations. The overall prediction error rate was 
0.057, slightly above the expected a priori rate of 0.05 (a + P). Not only 
did the EXSPRT predict fairly accurately, it did so with an average of 8.4 
randomly selected items for mastery decisions and 9.4 items for non- 
mastery decisions. The overall average test length was 8.9, and EXSPRT 
decisions agreed with total test decisions 94.3% of the time. 

Similar reverse queries were made for the computer literacy test 
administrations: 

3. If total test decision is mastery 
and test item pool is computer literacy test, 

76 out of 104 
then EXSPRT decision is mastery? 
75 out of 76, likelihood = 0.987. 

4. If total test decision is nonmastery 
and test item pool is computer literacy test, 

28 out of 104 
then EXSPRT decision is nonmastery? 
27 out of 28, likelihood = 0.964. 

If these two query results are combined, the EXSPRT predicted mastery 
and nonmastery decisions accurately in 102 out of 104 cases, for an error 
rate of 0.019, which is less than the expected rate of 0.05. An average of 
13.6 randomly selected items were required for EXSPRT mastery decisions 
and 12.3 items for nonmastery decisions. The overall average EXSPRT test 
length was 13.2, and EXSPRT decisions agreed with total test decisions 
98.1% of the time. 
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Only 50 prior test administrations were selected at random for each 
APT-derived rule base. Larger sample sizes did not appreciably improve 
predictive validity for the computer literacy test. Although further valida- 
tion studies are planned, it would initially appear that the EXSPRT is a 
strong alternative to IRT-based approaches to adaptive mastery testing, 
because the EXSPRT has high predictive validity and does not require such 
large samples of examinees in advance. Moreover, the EXSPRT reached 
its decisions with an average of 9 to 13 randomly selected items on the 
two tests studied thus far. 

The EXSPRT has been extended to include an intelligent item selec- 
tion procedure during a computer-based test, referred to as EXSPRT-I. In- 
stead of selecting items randomly during a test, items are chosen on the 
basis of their ability to discriminate between masters and nonmasters and 
their compatibility with an examinee's estimated achievement level. With 
the EXSPRT-I, adaptive tests are even shorter, requiring an overall average 
of six and eight items on the two tests just described. See Frick et al. (1989) 
for further details, including a comparison of the EXSPRT with the one- 
parameter IRT model. 

Although the EXSPRT has evolved considerably beyond initial analysis 
of patterns in time, it should be noted that it was an APT view that led 
to the formation of a rule base, which in turn was used by an adaptive 
testing system that also incorporated other features such as Bayesian in- 
ference, SPRT stopping rules and intelligent item selection procedures. 

Discussion 

In the broadest sense, temporal pattern recognition is not a new idea. The 
ability to recognize temporal patterns helps humans predict future hap- 
penings. For example, if one releases a pencil being held above the table, 
we can predict that under ordinary circumstances the pencil will fall. 

I have added rigor to the process of temporal pattern recognition by 
using concepts from information theory, set theory, and probability 
theory, by developing a systematic method for data collection (APT scores), 
and by formalizing methods for aggregating results (APT queries)-all of 
which have been referred to here as analysis of patterns in time (APT). 
The discussion that follows focuses on other extant methodologies that 
are similar to but different from APT. 

The Linear Models Approach 
As indicated in the introduction, the linear models approach (LMA) 
historically has tended to dominate educational research methodology, 
although naturalistic or more qualitative approaches have gained status 
in the past decade or so. The LMA has also tended to dominate the social 
sciences in general. (See Frick, 1983, for further discussion of this 
phenomenon.) The world view in the LMA is that we measure variables 
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separately and then attempt to characterize their relationship with an ap- 
propriate mathematical model, where in general variable Y is some func- 
tion of X. A mathematical equation is used to express the relation. In its 
most basic form, the equation represents a straight line in a two- 
dimensional Cartesian coordinate system, and the principle can be ex- 
tended to many variables (including those measured at a nominal level 
by use of dummy coding schemes). In essence, the relation is modeled 
by a line surface, whether straight or curved, in n-dimensional space. When 
such linear relations exist among variables, then a mathematical equation 
with estimates of parameters (e.g., regression coefficients) is a very elegant 
and parsimonious way to express the relation. 

In APT, the view of a relation is quite different. First, a relation oc- 
curs in time. A relation is viewed as a set of temporal patterns, not as a 
line surface in n-dimensional space. There is no imposition of any 
mathematical model in APT with respect to identifying a temporal rela- 
tion. A relation is measured in APT by simply counting occurrences of 
relevant temporal patterns and aggregating the durations of the patterns. 
This may seem rather simplistic to those accustomed to the LMA, but Ken- 
dall (1973) notes, 

Before proceeding to the more advanced methods, however, we 
may recall that in some cases forecasting can be successfully car- 
ried out merely by watching the phenomena of interest ap- 
proach .... Nor should we despise these simple-minded methods 
in the behavioural sciences... (p. 116) 

In APT a variable is usually a temporal pattern. In the study of 
academic learning time discussed earlier, one of the variables was student 
engagement when direct instruction was occurring. Measures of that tem- 
poral pattern were obtained on a sample of 25 students, and a mean and 
standard deviation were formed in a normal manner. See column 8 of Table 
1. The average probability of student engagement during direct instruc- 
tion was 0.967 with a standard deviation of 0.029. 

On the other hand, if an LMA is adopted, the data in columns 2 and 
3 in Table 1 are correlated. The linear correlation between student engage- 
ment (EN) and direct instruction (D1) was 0.57, and the regression equa- 
tion is 

EN = 0.57 + 0.40 (DI). (1) 

R2 was about 0.32, and the standard interpretation is that about one third 
of the variance in the amount of student engagement is predictable from 
knowledge of the amount of direct instruction occurring. If direct instruc- 
tion occurs 50% of the time, for example, then student engagement would 
be predicted to be about 77%. One might argue that Equation 1 contains 
more information than the APT results. For example, if DI = 1 (i.e., direct 
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instruction is occurring all the time), then EN would be predicted to be 
0.97, and if DI occurs none of the time (DI = 0), then EN would be ex- 
pected to be 0.57. These findings are essentially the same as those from 
APT. It turns out that this is a fortuitous coincidence because the joint 
occurrence of direct instruction and student nonengagment was nearly 
0. Therefore, the joint occurrence of direct instruction and student engage- 
ment was nearly equal to the occurrence of direct instruction. If a rela- 
tion is deterministic, then APT and LMA results will be consistent. 

If a relation is stochastic, however, results from the two approaches 
will differ. To illustrate the differences more clearly, let us try to predict 
direct instruction given knowledge of student engagement. The APT prob- 
ability of DI was estimated to be 0.561 if students were engaged, and 0.058 
if students were not engaged (not reported in Table 1 here, but derivable- 
see Frick, 1983). The linear regression equation fitted to the sample data, 
however, is 

DI = -.176 + .819 (EN). (2) 

Making a similar interpretation, if student engagement is 100%, then the 
predicted amount of direct instruction is 0.643. If student engagement is 
not occurring, the estimate of the proportion of direct instruction is 
-0.176. Clearly, the APT and LMA results differ here. Moreover, in the 
LMA the proportion of DI is predicted to be negative when EN is less than 
21.5%, which makes no sense. The reason for this is that beta weights 
and constants in regression analysis are not constrained to lie between 
0 and 1 inclusively as are probabilities or proportions. One could argue 
that we have simply extrapolated too far in the LMA, but that is not the 
essence of the problem. Rather, the discrepancies are due to different 
assumptions about the nature of a relation. 

A relation is deterministic if each category in the first classification 
is associated with only one category in the second classification. A rela- 
tion is stochastic if a category from the first classification is associated with 
two or more categories from the second. That is, a category in the second 
classification is not uniquely associated with a category in the first classifica- 
tion in a stochastic relation. (See Frick; 1983, p. 10, for further details.) 

In general, it is not possible to predict joint probabilities (and hence 
determine conditional probabilities) solely from knowledge of distribu- 
tions of marginal probabilities, except in a few special cases where cer- 
tain joint probabilities are equal to their respective marginals (Frick, 1983). 
Furthermore, when considering the prediction of temporal sequences from 
aggregate information about marginals only, it simply cannot be done (cf. 
Blossfeld, Hamerle, & Mayer, 1989; Tuma & Hannan, 1984). In other 
words, one cannot go from a grosser level of measurement to a finer level. 
If data are collected with APT in mind, it is always possible to treat those 
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data with the LMA if desired. The converse does not obtain, except when 
relations are deterministic. 

Time series analysis. Time series analysis (TSA) is one variation of 
the LMA. A time series is "a series of observations, xj (n); j = 1,..., p; 
n = 1,... N, made sequentially through time. Herej indexes the different 
measurements made at each time point n" (Hannan, 1970, p. 3). In terms 
of the basic idea, TSA and APT are similar indeed. However, the fundamen- 
tal difference in the conception of relation still obtains. In TSA the aim 
is to estimate parameters of a mathematical model (i.e., equation or set 
of equations) that provide a good fit to the temporal data. In APT tem- 
poral patterns are counted and their durations aggregated, with no im- 
position of a mathematical model to describe the relation. In APT the tem- 
poral pattern is the model. 

Other kinds of analytical methods in the LMA. Other LMA methods 
that attempt to estimate parameters of mathematical equations to explain 
covariation of multiple measures include path analysis, canonical analysis, 
factor analysis, discriminant analysis, and of course analysis of variance, 
covariance, and multivariate analysis of variance. APT differs from all of 
these in that relations are not assumed to be deterministic. In APT, a rela- 
tion is not constrained to be a function-in the set-theoretic sense of 
function-as is the case in the LMA and all its analytic methods that assume 
that relations are functions (cf. Coombs et al., 1970, pp. 351- 371). 

Event History Analysis 
As pointed out by a statistician who was asked by the editor of the AERJ 
to review an earlier version of this article, APT is similar in conception 
to numerous methodologies referred to collectively as "event history 
analysis" (cf. Blossfeld et al., 1989; Tuma & Hannan, 1984). 

By "event history analysis" we mean statistical methods used to 
analyze time intervals between successive state transitions or events. 
The number of states occupied by the analyzed units are finite, but 
the events may occur at any point in time. Consequently, in event 
history analyses statistical methods for analyzing stochastic pro- 
cesses with discrete states and continuous time are used. (Blossfeld 
et al., 1989, p. 11) 

The notion of event history analysis is not a new idea. For example, 
Coleman (1964) discussed the use of Markov models to study social pro- 
cesses. Coombs et al. (1970) also suggested Markov models and di-graphs 
as means of studying change processes in the field of psychology. As educa- 
tional examples, Bellack, Kliebard, Hyman, and Smith (1966), Flanders 
(1970), and Collett and Semmel (1973) have conducted studies where se- 
quential student/teacher behavior patterns were of interest. 

The Markov model. If only one classification is of interest in APT, 
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then APT bears some resemblance to the Markov model. In such a model, 
a state-space approach is postulated, where the process studied is 
characterized as being in only one of a number of possible states at a given 
moment in time. A set of states is considered, S = {S1,. . ., Sm}, at each 
moment in time, {T,,. . ., T,}. Of particular interest are the transitional prob- 
abilities between successive states. In the Markov model it is assumed that 
the transitional probabilities between successive states are unaffected by 
the history of the stochastic process. In APT this assumption is made also. 
However, in APT temporal patterns longer than two-stage sequences can 
be investigated. Moreover, in APT multiple classifications can be con- 
sidered simultaneously not just one as in the Markov model. (See Frick, 
1983, for further discussion, including comparison of APT to multivariate 
contingency analysis-Goodman, 1978.) 

Other models. Blossfeld et al. (1989) and Tuma and Hannan (1984) list 
numerous models for the analysis of event history data, including survivor 
functions, hazard functions, competing risk models, log-logistic models, 
and so on. As with the LMA, in each case some mathematical model is 
postulated in an attempt to describe a stochastic process (with the excep- 
tion of the Life Table Method). I do not question the value of these various 
approaches. For example, it certainly is useful to be able to estimate the 
probability that a patient will live at least 5 years after receiving some treat- 
ment for cancer. Indeed, different treatments can be evaluated by com- 
paring their respective survivor functions. 

It is clear that APT scores are amendable to such analytical methods 
if desired. It should be noted also that a typical goal of event history analysis 
is to estimate the probability of how long a given state will last before 
it changes into a different state. For example, in an event history analysis 
of the ALT data one might ask questions such as, If direct instruction is 
occurring, what is the probability that a student will remain engaged for 
at least 5 minutes without going off task? In APT the question would be 
phrased, At any point in time that we observe academic activities in educa- 
tion, and direct instruction is occurring at that time, what is the likelihood 
that a student is engaged in that activity? 

What is significant, however, in nearly all of the methods discussed 
in these two excellent volumes (Blossfeld et al., 1989; Tuma & Hannan, 
1984), is that some kind of mathematical model is being assumed. For ex- 
ample, Blossfeld et al. (1989) assert, "After the construction of a statistical 
model for the event history under discussion, the unknown parameters 
have to be estimated from the data" (p. 64). 

In APT this is not the case. In APT there is no concern for discover- 
ing some equation (mathematical model) that will predict a regularity in 
a stochastic process. Rather, in APT the onus is on the investigator to search 
for patterns by examining APT scores and forming queries. Presumably 
the search is guided by some hypotheses or questions. The results of these 
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queries can be tabulated, as was done in Tables 1 and 2. In APT we simply 
ask, What is the probability that a particular kind of event will occur, given 
the specification of a pattern of antecedent events? Each query is a model, 
so to speak, and the model is not a mathematical equation but rather the 
specification of a temporal pattern. 

Causality 
Causal conclusions are not warranted from results of APT queries alone. 
For example, it is tempting to conclude that direct instruction causes stu- 
dent engagement with academic tasks. Clearly direct instruction is not the 
cause, as student engagement also occurs in the absence of direct instruc- 
tion. Direct instruction may be a factor that is associated with increased 
student engagement, or it could be a proxy for something else not classified 
by the current observation scheme. 

Perhaps a clearer example is the temporal pattern of dawn-then- 
sunrise. We would not conclude that dawn causes sunrise, even though 
the pattern is highly predictable. We know of course, at least since Coper- 
nicus, that this temporal pattern is due to the earth's spin about its axis 
as it revolves around our sun. 

Thus, co-occurrence or sequential occurrence of events do not imply 
that one event causes another. Normally,the best way to determine causa- 
tion is to conduct an experiment, if possible, and manipulate one factor 
and observe its effect on the other while trying to randomize or control 
for the effects of any other factors. 

For example, in a follow-up study to the one described earlier, teachers 
were asked to try to increase direct instruction during the spring semester, 
after observing them and their students during a 2-month baseline during 
the fall semester. Not every teacher did so. In fact, a number of teachers 
decreased the amount of direct instruction in their classrooms in the spring 
semester. In the 11 cases where teachers decreased the proportion of direct 
instruction, the proportion of student engagement also decreased in 8 of 
those cases. In 11 of 14 cases where teachers actually did increase the pro- 
portion of direct instruction in their classes, the proportion of student 
engagement also increased. In those few cases where the trend did not 
occur, student engagement tended to be very high in the fall semester, 
and it is possible that ceiling effects prevented a further increase. Given 
the results of these 25 case studies, it would appear that direct instruction 
is often one causal factor in determining elementary student engagement 
in academic tasks. (See Rieth & Frick, 1983, for further details.) 

Generalizability of APT Query Results 

As with any descriptive measures, the generalizability of APT query results 
depends on the relative number of systems observed, how they are 
selected, when they are observed, and to what population of systems 
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generalizations are to be made. The same issues of sampling strategies (both 
within sampling units across time as well as of sampling units), observer 

accuracy in coding, and so forth, that arise in normal survey or observa- 
tional research still apply to the design of research studies that employ 
APT methodology. The reader is warned that collecting event history data 
is often time consuming and expensive (cf. Blossfeld, et al., 1989). 

One can estimate mean probabilities of occurrences of temporal paths, 
as was done in the academic learning time study; and confidence inter- 
vals can be estimated by ordinary statistical methods. These probabilities 
can be based on relative frequencies of event changes, or they can be based 
on relative duration of temporal patterns, depending on which is more 
appropriate for the questions being asked. (See Frick, 1983, 1988, for fur- 
ther details.) 

Conclusion 

Analysis of patterns in time, as a general notion, is not a new idea. The 
fruitfulness of this approach was illustrated by applying APT methodology 
to a classroom observational study. It was also exemplified by use of APT 

methodology to develop a rule base about test items that was in turn 
referenced by a computer-based adaptive testing system in making deci- 
sions about student mastery of an educational objective. 

APT was compared with numerous extant methodologies, including 
the linear models approach and event history analysis. The fundamental 
difference between APT and these other approaches is that no particular 
mathematical model is assumed in APT. In APT a model is viewed simply 
as a temporal pattern, whereas in most other approaches parameters of 
a mathematical model are estimated from data in which variables are 
measured separately. Moreover, in APT probabilities of temporal patterns 
are estimated by relative frequency and duration. 

Many statisticians may view APT as a simple and elementary technique 
of temporal data description. Nonetheless, the two research studies 
summarized earlier do indicate the power of a simple but useful idea. 

As a further example, APT queries and their results may be used to 
form rules for expert systems that become part of an intelligent computer- 
based instructional system. Such a system theoretically can optimize stu- 
dent learning by recommending instructional sequences (i.e., temporal pat- 
terns) that have high probabilities of resulting in student mastery. In other 
words, APT-based decision making by a computer program can provide 
an empirical foundation for artificial intelligence. 

As a final note, APT is another tool for doing research. Clearly, APT 
is not suitable for all problems. Researchers should choose methods that 
fit the problems addressed, not vice versa. Perhaps, though, APT will en- 
courage educational researchers to view some existing problems with a 
different mind set. If that happens, then this article has achieved its goal. 
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Notes 

'The APT methodology was previously termed non-metric temporal path analysis 
(NTPA). Although the previous terminology was logical given the conception of the method- 
ology, it tended to be confused with traditional path analysis, with which it bears no rela- 
tion. Thus, the name has been changed to analysis ofpatterns in time (APT). The methodology 
has not been changed, only the name. 
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