
© Copyright 1996 to 2008 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

Site:  www.Raven58Technologies.com.   
All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

System-Predictive Technologies Report # 11 
October 7, 2007  

The report number corresponds to the Proffitt Grant report of the same number 
 

Updated March 2008 
 
 
 
 
 
 
 

 

ATIS Graph Theory 
 

 
 
 
 

Prepared by:  Kenneth R. Thompson 
Head Researcher 

System Predictive Technologies 
2096 Elmore Avenue 

Columbus, Ohio 43224-5019 
 

 
 
 
 
 
 
 
 
 
 

Prepared as an independent report for 
Theodore W. Frick, SimEd & MAPSAT Development Head Researcher 

Associate Professor and Web Director 
School of Education 
Indiana University 

Bloomington, Indiana 



ATIS Graph Theory, Report 11 – 1 
 

© Copyright 1996 to 2008 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

Site:  www.Raven58Technologies.com.   
All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

 
ATIS Graph Theory 

 
 
 
 

ATIS Graph Theory is developed directly from the definition of system with GO, the object-

set, and G
A

, the relation-set, as the basis for the theory.  This development is required in order to 

obtain the analyses that determine the Structural Properties of the target system and the 

corresponding axioms.  These axioms will then provide the means to predict behavioral outcomes 

of the system.   

This development will start with a diagram of a system and its main partitions and source of 
its affect-relations.   

Graph theory is founded on the notion of vertex, v, as the only primitive term and edge, e, 
defined in terms of the system vertices.  For ATIS, v∈GO and e∈G

A
.   

The construction of GO and G
A

 are defined on the following two pages.   

This report is a revision of the Proffitt Grant report of the same number, and has been refined 
to reflect a more in-depth analysis of ATIS Graph Theory.  This report, in particular, will provide 
various definitions whose measures are determined by the Shortest Distance Measure defined by 
the Floyd-Warshall Algorithm.  This algorithm provides the shortest distance; i.e., path lengths, 
between every two system components.  Having established these distances, then path lengths 
between any two components can be determined as a sum of shortest paths as an application of the 
Transitive Property for Ordered Pairs.  That is, if (x,y) and (y,z) define direct affect relations from x 
to y and y to z, respectively, then there is an indirect affect relation, (x,z), from x to z that has a path 
link that is the sum of the two direct affect relations.   

Determining all direct and transitive ordered pairs will define all system shortest-path affect-
relations.   

As of March 2008, this report is being updated to provide a more thorough discussion of 
ATIS Graph Theory and other topics not previously discussed.  Some of the current updates are 
derived from the text:  Network Analysis, Methodological Foundations, by Ulrik Brandes and 
Thomas Erlebach (Eds.), Springer-Verlag, Berlin and Heidelberg, Germany, 2005.   
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The System Relation-Set, G
A
, is defined as follows:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affect Relation-Set, G
A

, Construction Decision Procedure 

 

The logical construction of the affect relation-set, G
A
, will be determined as 

follows:   

1) Every Information Base (ĪB) defines affect relations, An∈A, by the unary- and 
binary-component-derived sets from the ĪB.  That is, the components of An are of 
the form:  {{xi},{xi,yi}} ∈ Ai∈An that indicates that an “affect relation” has been 
determined to exist from “xi” to “yi.”   

2) Affect Relation-Set Predicate Schemas, P(xn,yn) = P(An), are defined as required to 
define the family of affect-relations, An∈A, as extensions of the predicate 
schemas.  ‘P(An)’ designates the predicate that defines the components of An.   

3) The Affect-Relation Transition Function, φn, is defined by:   

 φn: X×Y → An | X,Y ⊂ ĪB .∧. φn(X×Y) =  

{{xn},{xn,yn}}| P(An) ∧ xn∈X ∧ yn∈Y}.       

4) The family of affect relations, A = G
A
, is defined recursively by applications of 

the function defined in 3) for all elements in ĪB to each P(An) defined in 2).   

5) New components are evaluated for each P(An) defined in 2) and included in the 
appropriate extension when the value is true.   

6) No other objects will be considered as elements of An∈A = G
A
 except as they are 

generated in accordance with rules 1) through 5).   
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The System Object-Set, GO, is defined as follows:   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General System Object-Set, GO, Construction Decision Procedure 

 

The construction of the General System Object-Set, GO, is defined as follows:   

1) The following functions, µ and β, define elements of a topology, τn, that will allow 
for analysis of an affect relation.  That is, µ,β:An→τn, such that:   

   µAi = {xi}∈τn; and  

   βAi = {xi,yi}∈τn. 

Two additional functions, ϕ and η, will also be required for certain 
properties, and will allow for specification of specific elements, as follows:   
   ϕ{xi,yi} = yi = ϕ)βAi; and   

   ηAi = µAi 3 βAi = xi.   

Hence, the elements can be specified by ϕ and µ 3 β.   

2) The set of initial elements of GO will be defined by an existing ĪB as follows:   

GO = {x| ∃i(x∈µAi ∧ Ai∈An}.   

3) New elements will be added to GO by Rule 2) when the new element establishes a 
connected relation with an element in GO so that it is an element of an Ai∈An.   

4) No other objects will be considered as elements of GO except as they are generated 
in accordance with Rules 1) to 3).    
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Global Graph of System Properties 

A system is quite complex and exhibits many different interrelations of its components.  A 
General System Graph is shown below in Diagram S-1.  ‘G’ =df General System  

Diagram S-1 
 Universe of Discourse (U)              G = df (P, A, T, Q, σ)1,2 

 
                                                 
1 G is the General System, P is the Object Partitioning Set, A is the Family of Affect Relations Set, T is the Linearly 
Ordered Time Set, Q is the Qualifier Set, and σ is the System State Transition Function.   
2 TP, IP, FP, OP, SP, L, L ’, SBX, S’BY ∈ P (‘BX’ & ‘BY’ are the “background components”); A1, A2, …, An ∈A;  
t1, t2, …, tk ∈T; fI, fO, fT, fB, fS ∈T.   
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In Diagram S-1, the system components are the endvertices of the “arrows”.  In this case, 
the components are partitions (or partition-subsets) of the system; i.e., input, output, storeput, etc.   

Diagram S-1 also indicates the various Basic, Structural and Dynamic Properties of the 
system.   

An analysis of a system can become very complex.  This complexity increases even more 
when a full General System Multi-Level Graph as shown on the following page in Diagram S-2 is 
analyzed.  The graph shown is a 3-Tier Graph that includes an analysis of a supersystem and 
subsystems.   

 
 

General System 3-Tier Graph 

System analyses are most often, if not always, restricted to well-defined systems that ignore 
the environment of the system as well as subsystems.  This frequently is done simply to have more 
control over the research being conducted, and, in fact, may explain the reliance on statistical-based 
analyses; that is, they are essential since the total relevant system is not being analyzed at the 
component-level.  However, it is also for this reason that most, if not all, social science projects, in 
particular, are flawed and provide somewhat or substantial invalid results.  Diagram S-2 provides a 
glimpse as to why this is.   
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Diagram S-2 

 

 

 

 

 

 

 

 

 

 

 

 

Target System; e.g., a high school 

Target System’s Supersystem; e.g., the environment of the high school to include 
other high schools, middle schools that feed the high school; the controlling school 
board, etc.; the fire, police, and medical infrastructure; home, religious and social 
support groups, etc. 

Target System’s Subsystems; e.g., classrooms, principal’s office, counseling department, 
athletic organizations, in-school medical and security organizations, etc. 
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As can be seen, a comprehensive system analysis is very daunting since the super-system 

and all relevant subsystems must be analyzed as separate systems and then be integrated with the 
target system to determine their effect and the resulting predictive outcomes.   
 

 

General System Multi-Level Analysis 

As can be seen from Diagram S-2, a full analysis of a system should include at least an 
analysis of the main subsystems and their relation to the entire system even if the supersystem is not 
analyzed, which could result in a very large system.  However, in most cases, even subsystems are 
not analyzed in the research conducted by social scientists.  However, the analysis needs to be even 
more comprehensive.  Once a targeted system is defined for analysis, the relevant supersystems and 
subsystems must also be identified.  Once they are identified, then an analysis of each of these 
systems needs to be completed and then integrated with the analysis of the targeted system to obtain 
the desired analysis.   
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ATIS Overview 

Graph Theory provides the basis for many disciplines in which there is a connectedness of 
elements or components that seem to be related in a system-type arrangement.  Graph Theory 
provided an integral part of SIGGS (Set Theory, Information Theory, Graph Theory, and General 
Systems Theory) that was devised by Elizabeth Steiner (Maccia) and George Maccia in the 1960’s.  
More recently, it has provided a basis for studies of Networks and Social Networks, in particular.  
Much of Network Analysis, however, is designed around Internet-type systems and frequently relies 
on communications between components derived from Information Theory.  In all instances, the 
development of network-type analyses relies on statistical-based analyses.   

ATIS has been designed as an axiomatic theory that is not dependent on either Information 
Theory or statistical-based analyses.  For that reason, this report presents ATIS Graph Theory, and 
will utilize only those graph-theoretic concepts that are applicable to this theory, which may include 
certain axioms related to Graph Theory.   

 

ATIS Graph Theory 

Vertex (Component).  We start with one primitive term:  vertex (component), v.  

Vertices (components) are elements of a set, GO; that is, v∈GO.  In Diagram 1, all of the 
lettered “boxes” are vertices (components).  [Vertices will be referred to as components for the rest of 
this report.]   

 

Edge (Affect-Relation).  An edge (affect-relation), e, is mapped onto an element of the 
product GO%GO where the elements from each GO are the endvertices (end-components) of the edge 
(affect-relation).  In Diagram 1 shown below, the edges (affect-relations) are the non-directed or 
directed arrows between the components.  Note that (k,l) is a non-directed edge.   [Edges will be 
referred to as affect-relations for the rest of this report.]   

Therefore, G
A
 = GO%GO. 
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Non-Directed Affect-Relation.  A non-directed affect-relation, e, is an affect-relation that 
does not have an initiating or terminating end-component; that is, it is not directed.  For non-
directed affect-relations, GO is not partitioned. In Diagram 0, GO consists of all end-components.  
Diagram 0 represents a graph of the components and affect-relations.  (Graph will be formally 
defined below.)  The non-directed affect-relations are those that do not have the arrowheads; i.e., 
{k, l} = {l, k}.  Non-directed affect-relations are designated by a binary set containing the end-
components of the affect-relation.   

 

Mixed Graphs.  A mixed graph is a graph that has both non-directed and directed affect-
relations.  Diagram 0 presents a mixed graph.  Unlike for most systems or networks, it is likely that 
many of the systems that are analyzed under ATIS will be depicted by mixed graphs; i.e., many 
systems will have both known directed affect-relations and those that are unknown except for the 
components involved which will have to be depicted by non-directed affect-relations.  For 
example, it may be known that two students work together to complete their homework; however, it 
may be unknown which one, if either, is helping the other and would be identified by the affect-
relation controls activities of.  In such a system, the relation can be identified as a non-directed 
affect-relation.  In such systems, there will be two functions defining the mappings of the 
components:   

(1)  For non-directed affect-relations, ƒ:A → GO%GO.   

(2)  For directed affect-relations, ƒ:A → IGO%TGO.   

Incidence Relation.  An incidence relation is the relation defined by relations (1) and (2) 
above; i.e., an incidence relation defines the system relation-set to the system object-set.  

As a result of this definition, we will say that affect-relations are incident to their 
respective end-components.   

 

Directed Affect-Relation.  A directed affect-relation, e, is an affect-relation that has both an 
initiating and terminating end-component; that is, GO is divided into initiating-components, IGO, 
and terminating-components, TGO, so that (vi,vj)∈ IGO%TGO where IGO 4 TGO = GO but the sets are not 
necessarily disjoint.  In Diagram 0, IGO consists of the end-components that do not have the 
arrowheads, and TGO consists of the end-components that do have the arrowheads.   

Since the notion of a simple graph depends only on the definition of directed affect-relation, 
it will now be defined so that it can be used in some of the later definitions.  It will also be defined 
later as part of the definitions concerning various types of graphs.   
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Diagram 0 

 

Simple Affect-Relation.  A simple affect-relation is an affect-relation that maps onto only 
one component.   

In Diagram 0, all affect-relations are simple affect-relations. 

 

Simple Graph, or Simple Affect-Relation Graph.  A simple graph, or simple affect-
relation graph, is a graph that contains only simple affect-relations with no loops, cycles, or 
parallels (hyper-affect-relations) which will be defined later.    

 

Affect-Relation Basis (Undirected Affect-Relations).  An affect-relation basis (undirected 
affect-relations) are the affect-relations without the directed links; i.e., a mapping of undirected 
affect-relations.   

Affect-Relation Basis Graph.  An affect-relation basis graph is a graph that contains only 
undirected affect-relations.   

This graph may be required in order to determine the connectedness of any two components.   
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Component Degree.  The component degree, d(v), is the number of affect-relations incident to v; 
that is, that emanate from v or are initiated at v.    

Component degree is dependent on the affect relations being analyzed and whether or not 

the analysis is concerned with only one affect relation or a hyper-affect relation; that is, when there 

is more than one type of affect-relation, as well as whether both initiating and terminating relations 

are considered or taken individually.   

In Diagram 1, the component degree of j is 3; i.e., d(j) = 3, since there are three affect 

relations initiating or terminating with respect to j, and assuming that all relations incident to j are 

being analyzed   

Diagram 1a provides a greater challenge since there are three different affect relations in the 

graph.  What is the value of d(d)?  There are at least four different values:  dH(d) = 6, d1(d) = 3, 

d2(d) = 2, and d3(d) = 1, for the hyper-affect-relation, and affect-relation-1, -2, and -3, respectively.  

But, as will be seen below, there are actually some more alternatives, so you must be precise when 

defining the affect relations of concern.   

 
Diagram 1 

In Diagram 1, both (a, e, f, i, j, i, f, g, h) and  
(a, b, d, c, b, a, e, f, i, j, m, j, i, f, e) are walks 
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Diagram 1a 

 

Initiating-Component Degree.  The initiating component degree, dI(v), is the number of 

affect-relations incident to v that are initiating affect-relations.   

Terminating-Component Degree.  The terminating component degree, dT(v), is the 

number of affect-relations incident to v that are terminating affect-relations.   

In Diagram 1a, the component degree of d is:   

For Initiating and Terminating Hyper-Affect Relations:  dHI(d) = 3, dHT(d) = 3,  

For Two Affect Relations:  dH(1-2)I(d) = 3, dH(1-2)T(d) = 2, dH(1-3)I(d) = 1, dH(1-3)T(d) = 2, dH(2-3)I(d) = 1,  

dH(2-3)T(d) = 2,  

For Initiating-Affect Relations:  d1I(d) = 2, d2I(d) = 1, d3I(d) = 0,  

For Terminating-Affect Relations:  d1T(d) = 1, d2T(d) = 1, d3T(d) = 1.   
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Disjoint Component.  A disjoint component, v, is a component such that:  d(v) = 0; i.e., it is 
not connected to any other component.     

If a component is actually not connected to any other system component by any affect-
relation, then, by definition, it cannot be recognized.  However, with most empirical systems, every 
component will be connected to other components by at least one type of affect-relation.  Under 
such a system, a component may be a disjoint component with respect to one or more affect-
relations while being connected by other affect-relations that establish its identity within the system.   

Bridge.  A bridge, e, is an affect-relation such that if it is removed will make the end-
components disjoint.     

 

For certain analyses, one may wish to focus on a specific component and its affect-
relations.  To do so, the set of affect-relations incident to that component must be known.  Such a 
set is identified by ‘Γ’.  In Diagram 1a, Γ(d) = {(d,b)1, (d,d)1, (d,d)2, (c,d)3}; where the subscripts 
indicate the affect-relation.   

 

Component Affect-Relation Set.  The component affect-relation set, Γ(v), is the set of 
affect-relations incident to v.   

For ATIS, Γ(v) ∈ A
n
 ⊂ A.   

The component affect-relation set with initiating affect-relations at v is ΓI(v); and the 
component affect-relation set with terminating affect-relations at v is ΓT(v).   

Further, another important set is the component neighborhood set.  This is the set of all 
components that are directly-connected to a component.  Such a set is identified by ‘N’.   

Component Neighborhood Set.  The component neighborhood set, N(v), is the set of 
components that are directly-connected to v.   

For ATIS, N(v) ⊂ GO.   

The neighborhood affect-relation set with initiating affect-relations at v is NI(v); and the 
component affect-relation set with terminating affect-relations at v is NT(v).   
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Walk.  A walk is an alternating sequence of components and affect-relations, beginning and 
ending with a component, regardless of path direction, if any.  Essentially, to determine a walk, a 
graph is viewed as a non-directed graph.  And, this will facilitate one of the most basic concepts 
encountered in General Systems Theory from which ATIS has been retroduced:  Components are 
connected if a walk exists from one component to the other, otherwise they are disconnected.  A 
walk also determines whether or not one component affects another component is some way.  If a 
walk exists between the components, then there is an affect relation of some kind between them, 
and the behavior of the system is determined, in part, by this relation.   

 

Directed-Walk.  A directed-walk is an alternating sequence of components and affect-
relations, beginning and ending with a component, in which path direction is critical; that is the 
alternating sequence of components must start with a component that is an initiating end-component 
of the affect-relation and the subsequent component must be a terminating end-component that is 
also the initiating end-component of the next affect-relation, and the sequence continues to alternate 
with such affect-relations.   

NOTE:  If d(v) ≥ 2, then a directed-walk may continue in any direction if the terminating 

end-component has more than one subsequent initiating end-components.   

NOTE:  Also of concern, as with the definition of degree, is whether or not the directed-walk 
must be with respect to the same affect-relation or if different affect-relations may be used to 
continue the directed-walk.  In the latter case, Hyper-Affect-Relations are considered, whereas in the 
first case all affect-relations must be the same.  This same consideration must be accounted for even 
in a non-directed graph, since the paths will be different if different affect-relations are allowed.  
How components are connected is a matter of choice that may depend on the analysis being 
conducted.  Further, if, with respect to one affect relation, two components are not connected but 
are connected with another affect relation, then these components are connected with respect to the 
hyper-affect relation even if they are not connected with respect to one of the affect relations.  
Again, these components do in some manner modify the system behavior by their hyper-affect 
relation connectedness.   

 

Trail.  A trail is an alternating sequence of components and affect-relations, beginning and 
ending with a component, regardless of path direction, if any, and all affect-relations are distinct; 
i.e., the walk does not retrace itself, no affect-relation occurs more than once.   
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Closed Walk.  A closed walk is one in which the initial and final components are the same.   

In Diagram 1, (a, e, f, i, f, e, a) is a closed walk; where we start and end with “a”.  Although there are 
two each of “e” and “f”, the walk passes through them and does not close until “a” is reached. 

Open Walk.  An open walk is one in which the initial and final components are different.    

In Diagram 1, (b, c, d) is an open walk, and more precisely, an open directed-walk. 

Walk Length.  The walk length, ´, is the total number of affect-relations, n, encountered in 
the walk.   

For an open walk, ´ = n – 1; and for a closed walk, ´ = n, where “n” is the number of 
components encountered in the walk.     

Component Link.  A component link exists when there is a walk between two components 
and ´ = 1.   

Chain.  A chain is a directed-walk in which all components have d(v) = 2.   

Again, the choice of affect-relations may be of concern if there is more than one affect-

relation in a graph.   

 
Diagram 2 

In Diagram 2, (c, d, i, j) is a chain of length ´ = 3; and (f, g) is a chain of length ´ = 1. 
The first chain must start at c and end at j since d

G
(b) = 3 and d

G
(m) = 1. 
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Affect-Relation Division.  An affect-relation division is the dividing of an affect-relation 
obtained by the insertion of an additional component.   

For example, in the following graph, f and g are affect-relation connected.   

f → g  

It may be determined that there is an intervening, previously unknown, component that is 
actually part of this connection, thus resulting in the following graph:   

f → p → g 

This additional component, p, has now been added to the system with relations to f and g as 
shown.  The reverse of this process may also be done where a more complex graph is reduced to 
one that is more easily analyzed.   

 

 
 

Diagram 2 

 

Graph.  A graph, G = (GO,GA
), is defined by a function on two sets, GO and G

A
:   

ƒ:G
A
 → GO%GO; remembering that GO is defined by G

A
.   

Where there is no confusion, this function may be written:   

ƒ:A → GO%GO.   
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Frequently, the following notation is used for a graph:  G = (V,E), so that the component and 
affect-relation sets can be denoted by V(G) and E(G), respectively.  The advantage of this notation 
is that now the specific graph may be easily referenced.  However, the same can be denoted by the 
use of various letters for different graphs under consideration; e.g., G, H, J, etc., with subscripts for 
graphs G, H, J, etc.   

In Diagram 2, graph G is defined by GO and G
A
; where, GO = V(G) = {a, b, c, d, e, f, g, h, i, j, k, l, m} 

and G
A
 = E(G) = {(a,b), (a,e), (b,c), (c,d), (d,i), (i,j), (j,m), (e,b), (e,f), (f,g), (g,h), (k,l)}.   
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Tree Graphs 

Tree Graphs are frequently analyzed and are treated as though they represent certain 
empirical social structures; e.g., company personnel diagrams, political structures, school systems, 
etc.  However, it will be seen that when Social Networks are considered, there is no such thing as a 
true Tree Social Network, or Tree Social Graph.  The reason is obvious—in order to have a tree, the 
top or pinnacle component must not have any affect relation that is incident to it as a receiving 
component.  Such is not the case in any empirical system since all components have advisors or 
even secret individuals who influence the decisions of the one-at-the-top.  Therefore, we treat Tree 
Graphs only to the extent that they are frequently considered in the literature, but one must always 
be careful when attempting to analyze any Social Network as a Tree Social Network, since, in fact, 
it probably is not.   

As an example of a Tree Graph, we will take Diagram 2 and remove the affect relations (e,b) 
and (k,l) to obtain Diagram 2a, shown below.   

 
Diagram 2a 

Tree.  A tree, r(tree)(e), is an acyclic, simple-graph in which ∀vi,vj∃
1n∈N[r(tree)(e)v(i),v(j) ≥ n]; 

where N is the set of positive integers.  That is, every pair of connected components is directed-

connected by only one directed-walk in an acyclic, simple-graph.   

The notation ‘r(tree)(e)’ designates a tree-relation.  The subscripts of e designate the end-

components of the tree-edge.  ‘∀vi,vj∃
1n∈N[r(tree)(e)v(i),v(j) ≥ n]’ is read:  “For all v(i) and v(j), there is 

exactly one positive integer, n, such that, the distance defined by the tree-relation r at edge e with 

end-component vertices v(i) and v(j) is greater than or equal to n.”    

 

a

i

h

g

j
d

c

f
e

b

m 



ATIS Graph Theory, Report 11 – 19 
 

© Copyright 1996 to 2008 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

Site:  www.Raven58Technologies.com.   
All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

 

Branch Affect-Relation.  A branch affect-relation, r(branch)(e), is an affect-relation of a tree.   

In Diagram 2a, the branch affect-relations are all path-connections; e.g., (a,b), (a,e), (a,c), (a,d), (d,i), (d,j), 
(d,m), (e,f), (e,g), (e,h),.   

 

Leaf Affect-Relation.  A leaf affect-relation, r(leaf)(e), is an affect-relation in which the 

terminating end-component has d(v) = 1.   

In Diagram 2, the leaf affect-relations are:  (g,h) and (j,m) 

 
Diagram 2a 

 

Leaf-Component.  A leaf-component is the terminating end-component of a leaf affect-
relation.   

In Diagram 2a, the leaf-components are h and m 
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Component Set.  The component set of G, GO(G), is the set of all components in G ⊂ GO.   

 
Diagram 3:  The component set, GO(G) = {a, b, c, d, e, f, g, h, i, j, k, l, m}. 

If the graph, G*, defined by the three components b, c, and d are being 
considered, then GO(G*) = { b, c, d} ⊂ GO. 

 

System Size.  System size is the number of its components; i.e., the cardinality |GO(G)|. 

In Diagram 3, the system size is |GO(G)| = 13. 
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Diagram 3 

Affect-Relation Set.  The affect-relation set of G, G
A
(G), is the set of all affect-relations in 

G. 

In Diagram 3, the affect-relation set, which has two distinct affect relations, is G
A
(G) =  

{(a,b), (a,c), (a,d), (a,e), (a,f), (a,g), (a,h), (b,c), (b,d), (b,b), (c,d), (c,b), (c,c), (d,b), (d,c), (d,d), (e,f), (e,g), (e,h), 

(f,g), (f,h), (g,h), (k,l), (i,f), (i,g), (i,h), (i,j), (i,m), (i,i), (j,m), (j,i), (j,f), (j,g), (j,h), (j,j), (k,l)}Affect-Relation-1  4  

{(i,j)}Affect-Relation-2.   

Let G
A(1)

(G) = Affect-Relation-1 and G
A(2)

(G) = Affect-Relation-2, then:   

G
A
(G) = G

A(1)
(G) % {0} 4 G

A(2)
(G) % {1} = {G

A(1)
(G), G

A(2)
(G)} 

That is, the Affect-Relation Set consists of the two sets, G
A(1)

(G) and G
A(2)

(G), rather than the union of their 

components.  An Affect-Relation Set will normally be a family of sets.     
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System Complexity.  System complexity is the number of its affect-relations; i.e., the 
cardinality |G

A
(G)|.   

In Diagram 3 the system complexity is |G
A
(G)| = 37. 

 

Affect-Relation Loop.  An affect-relation loop is an affect-relation whose endpoint-
components are the same component and the affect relation is a direct-relation.   

 
Diagram 4:  3 loops, (h, h), (d, d)m(1), and (d, d)m(2).  NOTE:  (b, b), and other 

such relations are not loops since the endpoints are not the same, but pass 
through other components before returning to b.   

 

Affect-Relation Loop Graph (Loop Graph).  An affect-relation loop graph is a graph that 
contains an affect-relation loop.   

 

Affect-Relation Cycle.  An affect-relation cycle consists of connectedness that starts with 
one component, connects to one or more other components, and then returns to the initial 
component having not connected to any other component more than once.   

In Diagram 4, (b, c, d, b) is a cycle.   

NOTE:  (e, f, e) is not a cycle since the two affect relations are distinct.   

Affect-Relation Cyclic Graph (Cyclic Graph).  An affect-relation cyclic graph is a graph 
that contains an affect-relation cycle.   
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Affect-Relation Parallel.  An affect-relation parallel consists of one or more different types 
of affect-relations that connect the same components in the same way; that is, are directed in the 
same direction, or are connected components.   

In Diagram 4, (f, g)m(1) and (f, g)m(2) are affect-relation parallels.  It is important for directed affect-
relations that both affect-relations are in the same direction.  (e, f)m(1) and (f, e)m(2) are not affect-relation 
parallels.  (d, d)m(1) and (d, d)m(2) are affect-relation parallels only if the direction of the loops is irrelevant.  
NOTE:  Whereas it may generally be perceived that loop direction for the purposes of determining parallel 
relations cannot be distinguished, we will not here make that assumption.  There may be circumstances in 
which specific loop direction may be required; e.g., if there are “high” and “low” weather-type loops 
emanate from the same “center,” in which case the loops are not parallel.  For example, the manner in which 
one uses learning resources may need to be distinguished.  This might apply to a student’s use of textbooks 
as opposed to library resource texts.  In both instances the learning process may be “dedicated study.”  
However, one may wish to distinguish the availability of the resource by loop direction.  Other analyses 
may require a distinguishing of loop direction.  At this time, it seems to be more prudent to allow for such 
differing loop directions, even though most often they will not be distinguished.   

 

Affect-Relation Parallel Graph (Parallel Graph).  An affect-relation parallel graph is a 
graph that contains an affect-relation parallel.   

 

Multi-Affect-Relation System.  A multi-affect-relation system is a system which contains 
more than one type of affect-relation.   

By definition, a parallel graph depicts a multi-affect-relation system since more than one 
type of affect-relation is required in a parallel graph.  However, a multi-affect-relation system does 
not have to have parallel affect-relations.   

Multi-Affect-Relation Graph.  A multi-affect-relation graph is a graph which contains 
more than one type of affect-relation.   
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Affect-Relation Weight.  An affect-relation weight, ω(e∈G⊂G
A
), is the weight or value 

associated with an affect-relation.   

 
Diagram 5 

In Diagram 5, the affect-relation weights are the values associated with each affect-relation. 

 

Affect-Relation Weighted Graph.  An affect-relation weighted graph is a graph that has 
affect-relation weights.   

 
Diagram 5a 

In Diagram 5a, the component weights are the values associated with each component. 
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Component Weight.  A component weight, ϖ(v∈G⊂GO), is the weight or value associated 

with a component.   

Component Weighted Graph.  A component weighted graph is a graph that has 
component weights.   

Weighted Graph.  A weighted graph is a graph that is either an affect-relation weighted 
graph or a component weighted graph.   

 

Affect-Relation Weighted System.  An affect-relation weighted system is the sum of all of 
the affect-relation weights in the system, and is designated by the sum Σω(e∈G⊂G

A
).   

In Diagram 5, the affect-relation weighted system is Σω(e∈G⊂G
A
) = 865.  The blue vertex is 

colored for reference with respect to Diagram 6.  These values may; for example, represent the strength of 
influence that each component in an ATIS-system has on the affected component. 

 

Component Weighted System.  A component weighted system is the sum of all of the 
component weights in the system, and is designated by the sum Σϖ(v∈G⊂GO).   

In Diagram 5a, the component weighted system is Σϖ(v∈G⊂GO) = 905.  These values may; for 
example, represent the influence that a component has with respect to all other system components.  This 
weight is obtained from the total of the weighted affect-relations the component has in the system.  (If there 
are no assigned weights, each affect-relation weight is taken as 1.)  Then these weights will provide a quick 
indicator as to which components will most likely influence system behavior.   
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Component Weighted System.  A component weighted system is the sum of all of the 
component weights in the system, and is designated by the sum Σϖ(v∈G⊂GO).   

 

 

Path Weight.  The path weight is the sum of the weights of the affect-relations that 
comprise the path.   

 
Diagram 6 

In Diagram 6, the path weight for (a, b, c, f) = 260; and (f, e, d) = 140.  The 
central cycle from Diagram 5 associated with the blue component (vertex), 
has been reduced to loop g and has the same value as the cycle of 105.   

In this instance, the loop itself has an affect relation emanating from it to i.  
This affect relation is warranted since it emanates from a component of the 
reduced cycle and not from h itself.   
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Composite Chain.  A composite chain is a chain in which affect-relation loops, affect-
relation parallels and affect-relation cycles have been reduced to a single weighted-path connection.   

 

   
Diagrams 7a and 7b 

In Diagram 7a, (c, d, i, j) and (l, h) are chains, but not composite chains.  Consider all direct 
paths to have a weight of 1.  Reducing the loop, (g, g), and cycle, (e, a, b, e), to weighted 
affect relations, the entire walk can be made a composite chain (l, j) of length ´ = 13, as 
shown in Diagram 7b.  If a further reduction is required, the remaining composite chain can 
be reduced to (l, j) also of length ´ = 13 as shown in Diagram 7c.   

 
Diagram 7c 

 

Composite Chain Graph.  A composite chain graph is a graph that contains a composite 
chain.   
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Diagrams 8a, 8b and 8c 

System Partition.  A system partition is a subsystem, (V⊂GO,R⊂G
A
); such that, the 

components of V are all connected by the affect-relations of R, and R are only those affect-relations 

defined on the components of V.    

Diagrams 8b and 8c are partitions of 8a, reflecting two distinct affect 

relations.  8a is a partition of itself. 

 

System Partition Graph.  A system partition graph is a graph that contains a system 

partition.    
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Diagram 9a (System = G), and 9b (Subsystem = Y) 

GO = {a, b, c, d, e, f, g, h, I, j, k, l, m}; and V = {b, e, f, g} ⊂ GO 

 

Subsystem Partition Degree.  The subsystem partition degree, d
Y⊂G

(V), is the number of 

affect-relations in the subsystem, Y, associated with V; that is, d
Y
(V⊂GO) = |R⊂G

A
| for the 

subsystem (V,R).   

In Diagram 9b,  d
Y
(V⊂GO) = |R⊂G

A
| = 5 

(V,R) is the subsystem of components which are connected and have connections of the same 

type.   
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Diagram 9a (System = G), 9b (Subsystem = Y), and 9c (Subsystem = Z) 

 

Equi-Degree Subsystem Partition.  An equi-degree subsystem partition, d
Y⊂G

(Vm), is a 

subsystem in which all affect-relations have the same degree; that is, d
Y
(Vm⊂GO) = m.     

In Diagram 9b, d
Y
(V) = V2 = 2.  In Diagram 9c, d

Y
(V) = V5 = 5. 

NOTE:  There is nothing in the definition that says that the partition includes only 
connected components.  An analysis of such partitions will determine whether or 

not a system partition of a certain degree has any properties of interest.   

If the degree of the individual components are the same, represented by d
Y
(v) = Vm = m; 

where m is the number of connections incident to each of the components of V, then the subsystem 

can be analyzed for any special characteristics that such component-degree provides.  That is, for 

this designation, all components of the set V have the same degree.  This notation is used in order to 

identify the specific components being considered and the affect-relation type incident to those 

components.  This is also one means of separating out those components in a specific affect relation 

that comprise a chain, or a walk with certain degrees, etc.   

If the connectedness is non-directional, then m defines the total number of connections 

incident to the components.  It is of note that loops are counted twice since the edge contacts the 

component twice.  If d
G
(v) = V 0 = 0, then v is a disconnected component.  If d

G
(v) = V 1 = 1, then v is 

a leaf (considered below); i.e., a terminating component.   
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If, however, the connectedness is directional, then the type of the connectedness must be 

defined as initiating or terminating.  In this case, the affect-relations are referred to as paths, where 

the path is from the initiating component to the terminating component.   

 
Diagram 10 

 

IVm designates the initiating component degree of initiating directed paths incident to the 
component.   

d
G〈I〉(v) = IVm = m 

If, in Diagram 10, d
G〈I〉(v) = IV5 = 5, then V = Ø.   

If, in Diagram 10, d
G〈I〉(v) = IV3 = 3, then V = {b, f, g}.   

 

TVm designates the terminating component degree of terminating directed paths incident to 
the vertex.   

d
G〈T〉(v) = TVm = m 

If, in Diagram 10, d
G〈T〉(v) = TV1 = 1, then V = {a, b, c, d, I, j, m, h, i}.   
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Diagram 10 

 
If there is more than one type of connection to the vertex, then we have the following 

notation:   

Vm,n,...,w designates the component degree of connected edges incident to the vertex of type m1, m2, ..., mn.   

d
G〈m(1),...,m(n)〉(v) = Vm(1),...,m(n) = m1 + m2 + ... + mn 

If, in Diagram 10, d
G〈m(1), m(2)〉(v) = V2,3 = 2 + 3 = 5, where m1 = “2-degree 

affect-relations” and m2 = “3-degree affect-relations,” then V = {e, g}.   

That is, we are concerned with components that have a degree of 5 determined 
by two distinct affect relations one of which has 2 affect relations incident to 

the component and one which has 3 affect relations incident to the component.   

 
IVm,n,...,w designates the initiating component degree of edges with initiating directed paths incident to the 
vertex of type m1, m2, ..., mn.   

d
G〈I |m(1),...,m(n)〉(v) = Vm(1),...,m(n) = m(1) + m(2) + ... + m(n) 

If, in Diagram 10, d
G〈I | m(1), m(2)〉(v) = IV1,3 = 1 + 2 = 3, where m1 = “1-degree 

initiating affect-relations” and m2 = “2-degree initiating affect-relations,” then V = 
{f, g}.   

That is, we are concerned with components that have a degree of 3 with respect to 
initiating components in which one relation has 1 affect relation incident to the 

component and the other one has 2.  The analytic concern here is to determine if 
there are relevant properties of the system that are dependent on this particular 

affect-relation degree property.   
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Diagram 10 

 
TVm,n,...,w designates the terminating component degree of edges with terminating directed paths incident to 
the vertex of type m1, m2, ..., mn.   

d
G〈T |m(1),...,m(n)〉(v) = Vm(1),...,m(n) = m(1) + m(2) + ... + m(n) 

If, in Diagram 10, d
G〈T | m(1), m(2)〉(v) = TV2,2 = 2 + 2 = 4, where m1 = “2-degree 

terminating straight-line affect-relations” and m2 = “2-degree terminating broken-
line affect-relations,” then V = {e}.   
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Adjacent Components.  Adjacent components are components that are connected by a walk 
of ´ = 1.   

 
Diagram 11 

(b,c), (e,f), (f,e), (j,i), (h,g), etc. are adjacent components. 

Directed Adjacent Components.  Directed adjacent components, r→(e), are affect-
relations connecting components with a walk of ´ = 1 in the direction of the connection:  |r→(e)| = 1; 
where, |r→(e)| is the measure of the length of the affect-relation path.    

[NOTE:  The nomenclature “r→(e)” designates a relation, r, defined by edge, e, that is directed, →.  
This arrow was not required for a tree-relation since tree is, by definition, directed.  The nomenclature will 
be simplified by eliminating this arrow whenever it is clear that the affect-relation is directed.]   

In Diagram 11:  (b,c), (e,f), (j,i), (k,l), etc. are directed adjacent 
components; however, (b,a), (d,c), etc. are not. 

 

Directed Non-Adjacent Components.  Directed non-adjacent components are affect-
relations connecting components such that |r→(e)| >1.   

In Diagram 11:  (b,d), (e,h), etc. are directed non-adjacent components. 

 

Directed Associated Components.  Directed associated components are affect-relations 
connecting components such that |r→(e)| ≥ 1.    

In Diagram 11:  (b,d), (e,h), etc. are directed associated components. 
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Diagram 11 

 

Simple Affect-Relation.  An affect-relation that maps onto only one component is a simple 
affect-relation.   

In Diagram 11, (e,f), (f,g),  (c,d),  etc., are simple affect-relations. 

 

Simple Affect-Relation Graph.  A simple affect-relation graph, or simple graph, is a 
graph that contains only simple affect-relations with no loops, cycles, or parallels (hyper-affect-
relations).   

 

Multiple Affect-Relations.  Multiple affect-relations are two or more distinct affect-
relations that map onto the same component.   

In Diagram 11, (i,j) defines multiple affect-relations. 

 

Multiple Affect-Relation Graph.  A multiple affect-relation graph is a graph that contains 
multiple affect-relations.   
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Diagram 12 

 

Similar Affect-Relations.  Similar affect-relations are affect-relations that are defined by 
the same predicate.   

In Diagram 12, (a,a), (d,i), (i,j), (b,e), (f,e), and (g,f) all have similar affect-
relations; i.e.,              

 

Parallel Affect-Relations.  Parallel affect-relations are dissimilar affect-relations that 
connect components in the same way; i.e., in the same direction.   

In Diagram 12, the solid-line directed affect-relations (g,h) and (h,g) are two affect-relations 
that map onto g and h.  However, these affect-relations are not parallel since they are in different 
directions.    

In Diagram 12, (a,a), (d,i), (i,j), (b,e), (f,e), and (g,f) are component-pairs that 
have parallel affect-relations. 
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Diagram 13:  System with 3 different affect relations represented by the 3 different lines. 

 

 
Diagram 14 

 
Hyper-Affect-Relation.  A hyper-affect-relation is a connected relation that maps multiple 

affect-relations onto component-pairs.   

In Diagram 14 the hyper-affect-relations are represented by the heavy solid 
lines that have replaced the multiple affect-relations shown in Diagram 13.  

These heavy lines represent that 2 or more affect-relations are defined 
between the various components. 
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Diagram 14:  Hypergraph, H 

 

Hypergraph (Hyper-Affect-Relation Graph).  A hypergraph, H, is a graph that contains 
hyper-affect-relations and is defined by H = (V,E); where E is the set of affect-relations that 
comprise the hyper-affect-relations.    

 

Whereas G
A
 consists of pairs of components that define an affect-relation, H(E) consists of a 

set of an arbitrary number of components that are derived from various affect-relations.  Extending 

the definition G
A
 = (vi,vj), we recognize that E, being a family of relations, can contain any number 

of relation types, E = (vi,vj)1,2,...,n.   In Diagram 14, the hyper-affect-relations are defined by 2 or 3 

different affect relations that were defined in Diagram 13.   
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Hyper-affect-relations are of especial interest for ATIS.  To facilitate understanding, 
Diagram 15 reflects the construction of a hyper-affect-relation, (i,j) extended from Diagram 14.  
Diagram 15 is a truncation of Diagram 14.  First, all directed affect-relations have been replaced 
with undirected, or connected, affect-relations.    

 

 
Diagram 15 

The hyper-affect-relation consists of two components between which various affect relations exist.  
The hyper-affect-relation is defined by the two components, i and j.  For example, a teacher and a student 
are related by numerous affect relations.  The connection between teacher and student is reflected by the 
first heavy edge between i and j.  The 3 colored, solid and broken lines are those reflected in Diagram 13.   

 
 
 
 
 

i
j 

i 
j 

i
j

i 
j 

Three different affect relations: 
“Controls learning of” / “Asks assistance of” / “Provides counseling for”. 
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This report will now continue with the development of ATIS Graph Theory applied to the 
defining of the ATIS Structural Properties.    

In the diagrams, the notation “2; A1-S3” or other similar notation, indicates that there is a 
path or connection of length 2 from A1 to S3.   

It is important to note that every Structural Property is defined in a manner that it is 
distinctly different from all other Structural Properties.  All measures shown in the following 
examples are distinctly different.  While such definitions may not necessarily reflect a desired 
interpretation, they do reflect distinct attributes of a system and are all closely associated with their 
initial intent.  That is, measures are designed to interpret various attributes of a system, which these 
definitions do.  As such, they must not be changed to reflect some other perspective.  If any 
changes are recommended, they must be considered with respect to the totality of the definitions, 
and cannot be arbitrarily made on an individual basis.  In particular, Active Dependentness and 
Passive Dependentness definitions are now parallel definitions and reflect the system connectedness 
of non-adjacent relations.  This is an important system attribute that must be measured.  Adjacent 
relations are more than adequately measured through other properties and there is no necessity of 
defining Dependentness in any other way.  Further, it is legitimate to consider that adjacent 
relations are more than adequately considered by Compactness, Strongness, Unilateralness, 
Weakness and Wholeness which characterize direct affects, while Dependentness is more properly 
reflected by relations that have more “substance” to them.   

In order to compare the property values side-by-side, the table on the following page is 
provided.  These are the values for the system that is described by the various properties that are 
defined individually following the table.   
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Property Values for School System of 14 Components 
with Relations Shown in Following Charts 

 

Property Count Value

Active Dependence 128.00 paths 338.75

Centrality 61.00 paths 161.44

Compactness 122.00 paths 322.87

Complete Connectedness 4.00 paths 10.59

Complexness 19.00 paths 19.00

Flexibleness log2(64)=6.00 paths 15.88

Heterarchy System 57.00 paths 150.85

Hierarchy System 0.00 paths 0.00

Independence 65.00 paths 172.02

Interdependence log2(15552)=13.92 paths 36.85

Passive Dependence 64.00 paths 169.38

Size 14.00 components 14.00

Strongness log2(248832)=17.92 paths 47.44

Unilateralness 0.00 paths 0.00

Vulnerableness 2.00 paths 5.29

Weakness 15.00 paths 39.70

Wholeness log2(15,552.00)=13.92 paths 36.85
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Complexity and Size in a School System 

 
Administrators: 
 

 
Teachers:       

 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of 
Complexity is the cardinality of the affect-relation set, and Size is the cardinality of the component set.   
 
Therefore:  M(

X
S) = 19.00, and M(

Z
S) = 14.00.   

Complexness, 
X
S, =df a measure of a partition, Y = (V⊂GO,R⊂G

A
), characterized by the number of 

affect-relations.   

M(
X
S) =df |Y(R)|   

 

Sizeness, 
Z
S, =df a measure of a partition, Y = (V⊂GO,R⊂G

A
), characterized by the number of 

components.   

M(
Z
S) =df |Y(V)|   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 A2 

T1 T2 T3 T4 

S1 S2 S3 S4 

S5 S6 S7 S8 
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Complexity and Size in a School System 

 
Administrators: 
 

 
Teachers:       

 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of 
 
Therefore:  M(

X
S) = 22.00, 23.00, or 24.00; and M(

Z
S) = 17.00.   

 

 

Complexity and Size Analyses 

When considering a school system, a more detailed analysis may be desired than that 
shown above.  For example, whereas all affect-relations are considered the same; i.e., controls 
activities of, in fact they are quite different.  There are several levels of control:  Administrator-to-
Administrator, Administrator-to-Teacher, Teacher-to-Teacher, Teacher-to-Student, and Student-to-
Student.  Each of these controls activities of affect-relation can be analyzed as independent affect-
relations.   

Further, it may be that a greater refinement is desired as reflected in the following graph.  
In this graph, it is recognized that there may be additional Student-to-Student affect-relations.  For 
this new analysis, complexity and size will have the following values:  M(

X
S) = 22.00, 23.00 or 

24.00; and M(
Z
S) = 17.00.  The previous graph may simply be a truncated version of this graph.  It 

may be that weighted relations may be required for the previous graph and such will be determined 
by the analyst.  System values are greatly dependent on the expertise of the analyst and intent of the 
analysis.   

 

 

 

 
A1 A2 

T1 T2 T3 T4 

S1 S2 S3 S4 

S5 S6 S7 S8 S9 
S10 

S11 
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Normalization Factor 

Most of the definitions that will be used for Structural Properties will require a 
Normalization Factor in order to have measures that are comparable between systems as well 
as within a system.   

This Normalization Factor accounts for differing sizes between systems and the 
number of affect-relations that are considered.   

 

Normalization Factor, C, =df [log2(P[Z(SO)]) ÷ n];  for ‘n’ affect relations.   

 

 

Property-Measure Precision 

Property measures are not necessarily as precise as desired and as projected by the 
theory.   

For the Active Dependentness property, the measure is quite accurate since only 
adjacent components are being measured.  However, it is significant to note that in many of 
the Structural Property definitions any reference to the number of paths related to a property 
is, at this time, not precise.  The reason is that the present state-of-the-art programming will 
only allow for shortest-path computations between any two components to preclude 
combinatorial explosion.   

However, since all properties will be measured with the same lack of precision, it is 
considered that, for system-to-system comparisons, the measures will be accurate for their 
intended purposes until more precise evaluations are possible.   
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Active Dependentness in a School System 

 
Administrators: 
 
 

 
Teachers:       

 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of   
In this system, there are 10 components that Control Activities of other components with respect to 
Active Dependentness.  Since there is only 1 affect-relation and 14 components, then the total possible 
affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  The value 
is determined by finding the product of the degrees of each initiating component.  There are 128 paths 
related to Active Dependentness.   
 
Therefore:  M(ADS) l 338.75.   

Active dependentness, ADS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by initiating 

component affect-relations.   

ADS =df Y | ∀vi,vj∈Y(V )∃e∈Y(R)[e = (vi,vj) ∧ dI(v) > 0] 

Active dependentness is determined by the initiating-component degrees of the system. 

 M:  Active dependentness measure, M(ADS), =df a measure of initiating component affect-
relations.   

M(ADS) =df {[Σi=1,…,n(Πj=1,…,mdI(v)j)i] ÷ C} % 100  

 

 

 

 
A1 A2 

T1 T2 T3 T4 
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Centralization in a School System 

 
 
Administrators: 

 
 
 
Teachers:       

 
 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of   
In this system, there is 1 component that Controls Activities of other components with respect to 
Centralization.  Since there is only 1 affect-relation and 14 components, then the total possible affect 
relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 61 
paths related to Centralization, as can be determined by adding the numbers to the right of the ‘/’.      
 

Therefore:  M(CS) l 161.44.   

 

Centralness, CS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by primary-initiating 

(independent), non-adjacent component affect-relations.   

CS =df Y | ∀vi,vj∈Y(V )∃r(I)(e)∈Y(R)[e = (vi,vj) ⊃ r(I)(e) > 1 ∧ r(T)(e) = 0]  

‘r(I)(e)’ is read “The directed-affect-relation, r(e), with respect to the initiating component, I(e)”; 
and ‘r(T)(e)’ is read “The directed-affect-relation, r(e), with respect to the terminating component, 

T(e).” 

M:  Centralness measure, M(CS), =df a measure of primary-initiating, non-adjacent component 
affect-relations.  Let ‘P’ be the total number of permutations. 

M(CS) =df {[Σi=1,…,n (Σj=1,…,m|r(IS)(e) > 1|j)i] ÷ C] % 100 
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T1 T2 T3 T4 

S1 S2 S3 S4 

S5 S6 S7 S8 

2_A1-S2/1  
3_A1-S2/1 

2_A1-S1/1 

2_A1-S5/1 

2_A1-T4/2 
 
This designates the 
paths of length 2 from 
‘A1-T4’.   ‘/2’ 
designates that there 
are 2 such paths.

3_A1-S8/3 
5_A1-S8/1 

2_A1-S4/1 
4_A1-S4/3 

3_A1-T3/1 

2_A1-S6/1 

2_A1-S3/1 
4_A1-S3/1 

3_A1-S7/1 
2_A1-S7/1 
4_A1-S7/1 
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Compactness in a School System 

 
 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
Students:   

 

 

 
 
 
 
 
Affect Relation:  Controls Activities of 
In this system, there are 10 system components that Control Activities of other components with respect 
to Compactness.  Since there is only 1 affect-relation and 14 components, then the total possible affect 
relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 122 
paths related to Compactness.   
 
Therefore:  M(CPS) l 322.87.   

 

Compactness, CPS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by initiating, associated 

component affect-relations.   [Associated components are such that |r(e)| ≥ 1.] 

CPS =df Y | ∀vi,vj∈Y(V )∃r(I)(e)∈Y(R)[(e = (vi,vj) ⊃ r(I)(e) ≥ 1)] 

‘r(I)(e)’ is read “The directed-affect-relation, r(e), with respect to the initiating component, I(e).” 

M:  Compactness system measure, M(CPS), =df a measure of initiating, associated 
component affect-relations.   Let ‘P’ be the total number of permutations. 

M(CPS) =df {[Σi=1,…,n[log2(Πj=1,…,m|r(I)(e) ≥ 1|j ÷ (|Y(V)|2 - |Y(V)|)]i] ÷ C} % 100 
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Complete Connectivity in a School System 

 
Administrators: 
 

 
Teachers:       

 
 
Students:   

 

 

 
 
Affect Relation:  Controls Activities of 
In this system, there are 2 subsystems and 4 system components that Control Activities of other 
components with respect to Complete Connectivity.  Since there is only 1 affect-relation and 14 
components, then the total possible affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, 
C = log2(P[Z(SO)]) l 37.  There are 4 components related to Complete Connectivity.  To analyze this 
system in more detail, this system can be reduced to a single component for each subsystem to determine 
the properties of the resulting system.  There are 4 paths related to Completeness. 
 
Therefore:  M(CCS) l 10.59.   
 

 

Completeness, CCS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by pair-wise directed 

associated component affect-relations.    [Associated components are such that |r→(e)| ≥ 1.] 

CCS =df Y | ∀vi,vj∈Y(V )∃r→(e)∈Y(R)[e = (vi,vj) ∧ e = (vj,vi) ⊃ rd(e) ≥ 1] 

‘r→(e)’ is read “The directed-affect-relation, r(e).” 

M:  Completeness measure, M(CCS), =df a measure of pair-wise directed associated 
component affect-relations.  Let ‘P’ be the total number of permutations. 

M(CCS) =df {[Σi=1,…,nlog2(Πj=1,…,m|r→(e) ≥ 1|j)i] ÷ C} % 100 
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Complete Connectivity in a School System 

 
Administrators: 
 

 
Teachers:       

 
 
Students:   

 

 

 
 
 
Therefore:  M(CCS) l 85.11.   
 
 

 

The previous system has been modified to make only one subsystem that is completely 
connected as shown by the graph below.  In this new system, there are 5 system components that 
Control Activities of other components with respect to Complete Connectivity.  Since there are 14 
components, then the total possible affect relation paths is P[Z(SO)] = 236,975,181,590; and 
therefore, log2(P[Z(SO)]) ≈ 37.786.  

This complete connectivity can be reduced to a single component, as shown on the 
following page, to determine the properties of the resulting system.  There are 32 paths related to 
Completeness in this system.   
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Complete Connectivity in a School System 

 
Administrators: 
 

 
Teachers:       

 
 
Students:   

 

 

 
 
 
Therefore:  M(CCS) l 0.00.   
 
 

 

 

The previous system has been modified, as indicated by the bracket, to make only one 
subsystem that is completely connected.  The 5 components have been reduced to one, C1.  In this 
new system, there are 0 system components that Control Activities of other components with respect 
to Complete Connectivity.  Since there are 10 components, then the total possible affect relation 
paths is P[Z(SO)] = 9,864,090; and therefore, log2(P[Z(SO)]) ≈ 23.234.   

One advantage of reducing the system to 0-Connectivity is to determine the effect of the 
subsystem on the system.  This might be of value; e.g., when analyzing a system to see whether the 
isolation of a subsystem would result in a system behavior that is more desirable.  Also, notice that 
it is irrelevant which component of the isolated subsystem each of A1, A2, S3,and S6 were related 
to, all that is of concern is that they were related to one of the subsystem components.   
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T1 T2 T3 T4 

S1 S2 S3 S4 
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Analysis Considerations 

 

It is significant to note that the Complete Connectivity of the three previous systems are 
distinctly different, the first having a measure of 10.59, the second of 85.11, and the third of 0.00.   

It is clear from their measures, however, that each would have a different impact on the 
entire system.  Therefore, although subsystems can be reduced to single components, it is important 
to also determine the effect of each subsystem on the entire system, or to weight the reduced 
component to reflect their impact.   

Analyses that eliminate subsystems are of value, however, to demonstrate the impact of 
eliminating just such subsystem.  For example, in school systems that are experiencing financial 
difficulties, the first program eliminations are extracurricular activities, art and music, or some other 
programs that are considered “non-essential.”  A system analysis may demonstrate otherwise—or 
may not and such programs should be cut to conserve finances.   
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Flexibleness in a School System 

 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of 
In this system, there are 6 components that are accessed by other components with respect to Control 
Activities of other components with respect to Flexibleness.  Since there is only 1 affect-relation and 14 
components, then the total possible affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, 
C = log2(P[Z(SO)]) l 37.  The value is determined by finding the product of the degrees of each 
component that has 2 or more receiving affect relations.  In this case the product is 64, and the log2(64) 
= 6.  There are 6 paths related to Flexibleness. Therefore:  M(FS) l 15.88.   

 

Flexibleness, FS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by receiving associated 

component affect-relations; such that, the receiving component has receiving-degree greater 
than 1.  [Associated components are such that |r(e)| ≥ 1.] 

FS =df Y | ∀vi,vj∈Y(V )∃r(I)(e)∈Y(R)[(e = (vi,vj) ⊃ (r(I)(e) ≥ 1 ∧ d(vj) > 1)]   

‘r(I)(e)’ is read “The directed-affect-relation, r(e), with respect to the initiating component, I(e).” 

M:  Flexibleness measure, M(FS), =Df a measure of receiving associated component affect-
relations; such that, the receiving component has degree greater than 1.   Let ‘P’ be the total number 

of permutations.   M(FS) =df {[Σi=1,…,n(Πj=1,…,m[d(Vj)T])i] ÷ C} % 100 
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Heterarchy-Relatedness in a School System 

Administrators: 
 

 
 
Teachers:       

 
 
 
 
Students:   

 

 

 
 
 
 
Affect Relation:  Controls Activities of 
In this system, there are 6 components that Control Activities of other components with respect to 
Heterarchy-Relatedness.  Since there is only 1 affect-relation and 14 components, then the total possible 
affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 
57 paths related to Heterarchy-Relatedness.    
Therefore:  M(HAS) l 150.85.   

Heterarchiness, HAS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by associated component 

affect-relations that are both initiating and receiving, or leaf associated component affect-
relations.   [Associated components are such that |r(e)| ≥ 1.] 

HAS =df Y | ∀vi,vj∈Y(V )∃r(I,T)(e),r(leaf)(e)∈Y(R)[(e = (vi,vj) ⊃ (r(I,T)(e) ≥ 1 ∨ r(leaf)(e) ≥ 1)] 

‘r(I,T)(e)’ is read “The directed-affect-relation, r(e), with respect to an initiating and terminating 
component, I(e) and T(e); i.e., I(e) = T(e)”; and ‘r(leaf)(e)’ is read “The directed-affect-relation, r(e), 

with respect to the leaf component, leaf(e).” 

M:  Heterarchiness measure, M(HAS), =df a measure of initiating and receiving associated 
component affect-relations, or receiving associated (leaf) component affect-relations.  Let 
‘P’ be the total number of permutations. 

M(HAS) =df {[Σi=1,…,n(Σj=1,…,m[|rd(I,T)(e) ≥ 1| + |r(T)(e) ≥ 1|]j)i] ÷ C} % 100 
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Hierarchy-Relatedness in a School System 

 
 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
Students:   

 

 

 
 
 
 
Affect Relation:  Controls Activities of 
In this system, there are no components that Controls Activities of other components with respect to 
Hierarchy-Relatedness.  Since there is only 1 affect-relation and 14 components, then the total possible 
affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 
0 paths related to Hierarchy-Relatedness.  Although this system has a “root” that could indicate a 
hierarchy, there are no true levels of connection which are not otherwise connected as a heterarchy; that 
is there is no “tree” configuration.  This structure is not a hierarchy.  There are 0 paths related to 
Hierarchy-Relatedness. Therefore:  M(HOS) = 0.00. 

Hierarchiness, HOS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by a tree.   

HOS =df Y | ∀vi,vj∈Y(V )∃r(tree)(e)v(i),v(j)∈Y(R)[(e = (vi,vj) ⊃ (r(tree)(e)v(i),v(j) = 1)]  

‘r(tree)(e)v(i),v(j)’ is read “The directed-affect-relation, r(e), with respect to the tree components, 
tree(e)”; i.e., for all vi and vj, there is only one directed path.   

M:  Hierarchiness measure, M(HOS), =df a measure of a tree.   

M(HOS) =df {[Σi=1,…,n(Σj=1,…,m[|r(branch)(e) ≥ 1| % |max(r(walk)(e) + 1)|]j)i] ÷ C} % 100  
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Hierarchy-Relatedness in a School System 

 
 
Administrators: 

 
 
 
Teachers:       

 
 
Students:   

 

 

 
 
 
 
Affect Relation:  Controls Activities of   
 
In this system, there is 1 component that Controls Activities of other components with respect to 
Hierarchy-Relatedness; i.e., A1.   
 
Since there are 13 components, then the total possible affect relation paths is |P[Z(SO)]| = 16,926,797,472. 
 
Therefore, log2(|P[Z(SO)]|) l 34 l 33.97859.   
 
There are 20 paths related to Hierarchy-Relatedness.   
 
C = [33.97859 ÷ 13] % 100 = 261.37.  
 
Therefore, M(HOS) = [(Σi=1,…,n[(|r(branch)(e) ≥ 1| % |max(r(walk)(e) + 1)|) ÷ 261.37 =  

(20 % 3) ÷ (261.37 % 100 = 22.96.  
 
Therefore:  M(HOS) = 22.96. 
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Independentness in a School System 

 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of 
In this system, there is 1 component that Controls Activities of other components with respect to 
Independentness.  Since there is only 1 affect-relation and 14 components, then the total possible affect 
relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 64 
paths related to Independentness.   
 
Therefore:  M(IS) l 172.02 

Independentness, IS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by primary-initiating 

associated component affect-relations.  [Associated components are such that |r(e)| ≥ 1.] 

IS =df Y | ∀vi,vj∈Y(V )∃r(I)(e)∈Y(R)[e = (vi,vj) ⊃ r(I)(e) ≥ 1 ∧ r(T)(e) = 0]   

‘r(I)(e)’ is read “The directed-affect-relation, r(e), with respect to the initiating component, I(e)”; 
and ‘r(T)(e)’ is read “The directed-affect-relation, r(e), with respect to the terminating component, 
T(e)” 

M:  Independentness measure, M(IS), =df a measure of primary-initiating component 
affect-relations.   Let ‘P’ be the total number of permutations. 

M(IS) =df {[Σi=1,…,n(Σj=1,…,m|r(PI)(e) ≥ 1|j)i] ÷ C} % 100  
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Interdependentness in a School System 

 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
 
Students:   

 

 
 

 
Affect Relation:  Controls Activities of 
In this system, there are 9 components that Control Activities of other components with respect to 
Interdependentness.  Since there is only 1 affect-relation and 14 components, then the total possible 
affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  The value 
is determined by finding the product of the degrees of each component that is both initiating and 
terminating.  In this case the product is 4,320, and the log2(4,320) ≈ 12.  There are 14 paths related to 
Interdependentness. 
 
Therefore:  M(NS) l 36.85.   

Interdependentness, NS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by associated 

component affect-relations that are both initiating and receiving.  [Associated components 
are such that |r(e)| ≥ 1.] 

NS =df Y | ∀vi,vj∈Y(V )∃r(I,T)(e)∈Y(R)[e = (vi,vj) ⊃ r(I,T)(e) = 1]  

‘rd(I,T)(e)’ is read “The directed-affect-relation, r(e), with respect to an initiating and terminating 
component, I(e) and T(e); i.e., I(e) = T(e).”   

M:   Interdependentness measure, NS, =df a measure of initiating and receiving associated 
component affect-relations.   Let ‘P’ be the total number of permutations. 

M(NS) =df {[Σi=1,…,n(log2Π j=1,…,m|r(I,T)(e) = 1|j)i] ÷ C} % 100  
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Passive Dependentness in a School System 

 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of 
In this system, there are 13 components that receive Control Activities of by other components with 
respect to Passive Dependentness.  Since there is only 1 affect-relation and 14 components, then the total 
possible affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  
The value is determined by finding the product of the degrees of each terminating component.  There are 
64 paths related to Passive Dependentness. 
 
Therefore:  M(PDS) l 169.38.   

Passive dependentness, PDS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by receiving 

component affect-relations.   

PDS =df Y | ∀vi,vj∈Y(V )∃e∈Y(R)[e = (vi,vj) ∧ dT(v) > 0] 

Passive dependentness is determined by the terminating-component degrees of the system. 

M:  Passive dependentness measure, M(PDS), =df a measure of receiving component affect-
relations.   

M(PDS) =df {[Σi=1,…,n(Πj=1,…,mdT(v)j)i] ÷ C} % 100    
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Strongness in a School System 

 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
 
Students:   

 

 

 
 
 
Affect Relation:  Controls Activities of  
In this system, there are 14 components that Control Activities of other components with respect to 
Strongness since all components are connected and numerous components are directed adjacent or non-
adjacent connected.  Since there is only 1 affect-relation and 14 components, then the total possible 
affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  The 
product of the component degrees is 248,832, with a log2|248,832| l 18.  There are 18 paths related to 
Independentness. 
 
Therefore:  M(SS) l 47.44.   

Strongness, SS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by connected associated 

components.  [Associated components are such that |r(e)| ≥ 1.]  

SS =df Y | ∀vi,vj∈Y(V )∃r→(e)∈Y(R)[e = (vi,vj)∈R]  

‘r→(e)’ is read “The directed-affect-relation, r(e).” 

M:  Strongness measure, SS, =df a measure of the degree of connected components.  Let ‘P’ 
be the total number of permutations. 

M(SS) =df {[log2Σi=1,…,n(Π j=1,…,md(vj))i] ÷ C} % 100  
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Unilateralness (Chains) in a School System 

 
 
Administrators: 
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Affect Relation:  Controls Activities of 
In this system, there are 0 components that Control Activities of other components with respect to 
Unilateralness.  Since there is only 1 affect-relation and 14 components, then the total possible affect 
relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 0 
paths related to Unilateralness.   
 
Therefore:  M(US) = 0.00.   

Unilateralness, US, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by directed-connected 

associated component chain affect-relations. [Associated components are such that |r(e)|≥ 1.] 

US =df Y | ∀vi,vj∈Y(V )∃r→(e)∈Y(R) [e = (vi,vj) ⊃ (dV(v) = 2 ∧ r→(e) > 1)] 

‘r→(e)’ is read “The directed-affect-relation, r(e).” 

M:  Unilateralness measure, M(US), =df a measure of directed-connected associated 
component chain affect-relations.    

M(US) =df {[Σi=1,…,n(Σj=1,…,m[|r→(e) > 1| ÷ |Ch(Y)|]j)i] ÷ C} % 100; where ‘Ch(Y)’ is a chain and 
‘|Ch(Y)|’ is the number of such chains on Y.   
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Unilateralness (Chains) in a School System 

 
 
Administrators: 

 
 
 
Teachers:       

 
 
 
 
Students:   

 

 

 
 
 
 
Affect Relation:  Controls Activities of 
 
Therefore:  M(US) = 14.11.     
 

 
 

In the system shown below which has been modified from the one above, there are 12 
components that Control Activities of other components with respect to Unilateralness.  Since there 
are 14 components, then the total possible affect relation paths is P[Z(SO)] = 236,975,181,590; and 
therefore, log2(P[Z(SO)]) l 37.786.   

 
For these 12 components there are 5 different chains.  However, only 3 of these chains are 

relevant to this measure; i.e., those with 2 or more paths—the blue and orange chains are not 
relevant for this measure.  There are 16 paths related to the relevant chains.   
 
 
 

A1 A2 

T1 T2 T3 T4 

S1 S2 S3 S4 

S5 S6 S7 S8 



ATIS Graph Theory, Report 11 – 62 
 

© Copyright 1996 to 2008 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

Site:  www.Raven58Technologies.com.   
All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

Vulnerableness in a School System 
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Affect Relation:  Controls Activities of 
In this system, there are there are 2 components that Control Activities of other components with respect 
to Vulnerableness.  Since there is only 1 affect-relation and 14 components, then the total possible affect 
relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 2 
paths related to Vulnerableness.   
 
Therefore:  M(VS) l 5.29.   

Vulnerableness, VS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by leaf affect-

relations.    

VS =df Y | ∀vi,vj∈Y(V )∃r(leaf)(e)∈Y(R) [e = (vi,vj) ⊃ r(leaf)(e) = 1)] 

‘r(leaf)(e)’ is read “The directed-affect-relation, r(e), with respect to the leaf component, leaf(e)” 

M:  Vulnerableness measure, VS, =df a measure of directed-connected adjacent terminating 
component affect-relations.  Let ‘P’ be the total number of permutations. 

M(VS) =df {[Σi=1,…,n(Σj=1,…,m|r(leaf)(e) = 1|j)i] ÷ C} % 100  
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Weakness in a School System 
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Affect Relation:  Controls Activities of 
In this system, there are there are 13 components that Control Activities of other components with 
respect to Weakness.  Since there is only 1 affect-relation and 14 components, then the total possible 
affect relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  There are 
15 paths related to Weakness.   
 
Therefore:  M(WCS) l 39.70.   

Weakness, WKS, =df a partition, Y = (V⊂GO,R⊂G
A
), characterized by adjacent connected affect-

relations that are not directed-connected.   

WKS =df Y | ∀vi,vj∈Y(V )∃r~→(e)∈Y(R)[e = (vi,vj) ⊃ (r~→(e) = 1)] 

‘r~→(e)’ is read “The non-directed-affect-relation, r(e).” 

M:  Weakness measure, WKS, =df a measure of associated connected affect-relations that are 
not directed-connected, and leaf affect-relations.  Let ‘P’ be the total number of 
permutations. 

M(WKS) =df {[Σi=1,…,n(Σj=1,…,m|r~→(e) = 1|j)i] ÷ C} % 100 
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Wholeness in a School System 
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Affect Relation:  Controls Activities of 
In this system, there is 1 component that Controls Activities of other components with respect to 
Wholeness.  Since there is only 1 affect-relation and 14 components, then the total possible affect 
relation paths is P[Z(SO)] = 236,975,181,590; and therefore, C = log2(P[Z(SO)]) l 37.  The product of 
the component degrees not including the wholly-connected component is 17,280, with a log2|17,280| l 
14.  There are 14 paths related to Independentness.  
 
Therefore:  M(WS) l 36.85.   

Wholeness, WS, =df a partition, Y = (V⊂GO,R⊂G
A

), characterized by associated directed-connected 
affect-relations from components directed-connected to all other components, other than 
primary-initiating components.   [Associated components are such that |r(e)| ≥ 1.] 

WS =df Y | ∃vi∀vj∈Y(V )∃rd(e)∈Y(R) [e = (vi,vj) ⊃ rd(e) ≥ 1)] 

‘r→(e)’ is read “The directed-affect-relation, r(e).” 

M:   Wholeness measure, M(WA), =df a measure of associated directed-connected affect-
relations from components connected to all other components.  Let ‘P’ be the total number of 
permutations. 

M(WS) =df {[Σi=1,…,n(Σj=1,…,m[|r→(e)| ÷ |W(v)|]j)i] ÷ C} % 100;  
Where j does not include W(v), and where W(v) are the wholly-connected components, and |W(v) = 0| = 1. 
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