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This article is an extension of previous articles prepared by Kenneth R. Thompson, and, in particular, of “Axiomatic 

Theories of Intentional Systems:  Methodology of Theory Construction,” published in Scientific Inquiry Journal.  

These articles relate to the development of axiomatic theories of intentional systems of which education theory is 
one such system.  The previous article on “Methodology of Theory Construction” should be read as it provides the 

basis for the current article.  In the previous article, there is an extensive discussion of “Hypothesis-Based Research 

Methodologies,” methodologies that pervade the social sciences.  This current article presents a critique of 
methodologies for scientific discovery, and provides an alternative by which comprehensive, consistent, and 

complete theories in the social sciences, and education, in particular, can be developed.  Further, it is argued that 

only axiomatic theories provide the means by which reliable evaluations and predictions can be obtained.  A 
discussion of the hypothesis-driven methodologies of the social sciences is provided and why such methodologies 

do not result in scientific theories.  Pursuant to Charles S. Peirce and subsequent confirmation by Elizabeth Steiner, 
theory development is the result of a reasoning process identified as retroduction.  With this foundation, a 

methodology of theory construction is given that provides a means for social scientists to develop comprehensive, 

consistent, complete, and axiomatic theories.    
 

A proof of the Retroduction Theorem is given that demonstrates that the retroductive process does result in 

development of new theory.  Further, a proof of the Abduction Theorem is provided that clearly distinguishes 
abduction from retroduction.   

 

Keywords:  General systems theory, intentional systems, behavioral theory, education theory, SIGGS, SimEd, ATIS, 
A-GSBT, retroduction, abduction, theory development.   

 

 

 

 

INTRODUCTION 
 

In my, Kenneth R. Thompson’s, first report, ‘General System’ Defined for Predictive Technologies of 

A-GSBT, I briefly described the development of general systems theory and the work that led to the 

development of A-GSBT.  Therein I indicated that the concept of defining A-GSBT as an option set.  

Such an interpretation is a distinct divergence from the prevailing interpretation of a general systems 

theory.  This distinction will be explicated in this report.   

In addition to discussing the concept of an option set that leads to an open-ended number of theories 

for the social sciences, I will also discuss the means by which theories are devised, which includes a 

discussion of retroduction and abduction.  This then leads to a discussion of the process by which 

theories can be developed in the social sciences.  This process will be distinguished from the almost 

universal hypothesis-driven methodology of scientific inquiry utilized in this industry.  It will be shown 

that the use of hypotheses does not lead to theory development, but that a modification of that 

methodology can lead to the development of theories in the social sciences.   
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Examples of Hypotheses in the Social Sciences 

And Converting Them to Axioms 
 

To see the distinction between hypotheses and axioms and how the latter may lead to theory, consider 

the following hypothesis taken from the social sciences as propounded by Tracey Clarke, Paul Ayres, 

and John Sweller in “The Impact of Sequencing and Prior Knowledge on Learning Mathematics through 

Spreadsheet Applications” (Clarke, 2005):   

 

HYPOTHESIS:  Students with a low-level knowledge of spreadsheets learn mathematics more 

effectively if the relevant spreadsheet skills are learned prior to attempting the mathematical tasks.   

 

The results of testing supported this hypothesis.  For our purposes the greater concern is how this 

hypothesis was developed and whether it may lead to theory development.  The rationale for the 

hypothesis is stated by the researchers as follows:   

 

According to cognitive load theory, instruction needs to be designed in a manner that 

facilitates the acquisition of knowledge in long-term memory while reducing unnecessary 

demands on working memory.  When technology is used to deliver instruction, the sequence 

in which students learn to use the technology and learn the relevant subject matter may have 

cognitive load implications, and should interact with their prior knowledge levels.  An 

experiment, using spreadsheets to assist student learning of mathematics, indicated that for 

students with little knowledge of spreadsheets, sequential instruction on spreadsheets 

followed by mathematics instruction was superior to a concurrent presentation.  These results 

are explained in terms of cognitive load theory.  (p. 15) 

 

The process by which this hypothesis was developed is a retroductive process; that is, cognitive 

load theory was used as a model to develop assertions about learning mathematics.  However, there is 

confusion concerning this process since it is claimed:  “These results are explained in terms of cognitive 

load theory” (see last sentence from above quotation).   

If in fact the results “are explained in terms of cognitive load theory,” and cognitive load theory 

(CLT) is in fact a theory, then this hypothesis may be a theorem of CLT and would be deductively 

obtained from that theory as a theorem to be validated; or, possibly, it is an interpretation of CLT and 

was derived as an abductive process—that is CLT was used as a model of mathematics learning and the 

content of the desired hypothesis was substituted for the content of CLT.  (‘Abduction’ will be more 

fully explained later in this article, but for now it can be understood as a process similar to that in which 

a mathematical formula may be applied to measure or interpret an empirical event.  The formula is 

“taken” from mathematics and “used” to help resolve a problem that concerns us.  The mathematical 

theory from which the formula is taken does not become a part of our theory, nor does the formula 

become an integral part of the theory.  The formula is simply a “mathematical model” that helps to 

answer a question.)   

However, it is not claimed that either approach was used, so the question moves to whether or not 

CLT is actually a theory, or is it a hypothesis that has been validated through various tests?  If it is a 

theory, then we may be able to determine in what sense it is claimed that CLT “explains” the hypothesis.   

Before proceeding, we need to clarify various types of ‘theory’.  In particular, we are concerned 

with the distinctions between explanatory and descriptive theories.   

 

Explanatory Theory.  An explanatory theory is an explanation of an observed phenomenon that 

sets forth the causal relations that result in what is observed.   

 

Descriptive Theory.  A descriptive theory defines an observed phenomenon in terms of its 

component parts as descriptive of its properties, and defines the interactions of those component parts 

that result in the observed outcome.   
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First, the use of the term theory in the context of CLT indicates that it is not either a formal theory 

or an axiomatic theory.  If it is a theory, then it appears to be a descriptive theory.  But, even as a 

descriptive theory, it appears to be very limited in scope and functions more like a hypothesis since 

deductive derivations are difficult to obtain.  But, let us look at this more carefully.   

Cognitive Load Theory, developed by J. Sweller, is founded on the following four principles:   

 

 Working memory, or short-term memory, has a maximum capacity identified as maximum 

cognitive load 

 Information that exceeds maximum cognitive load is lost  

 Learning requires that cognitive load remain below some value that is less than maximum 

cognitive load 

 Long-term memory is consciously processed through working memory  

 

NOTE:  The “theory” and “axioms” presented below are for the sole purpose of demonstrating a 

possible construction of an axiomatic theory and in no way is to be construed as a replacement for the 

Cognitive Load Theory developed by J. Sweller.  In fact, it is only as a result of the careful development 

of CLT that it is possible to derive an axiomatic theory therefrom.  In general, it is very difficult to 

ascertain axioms from a descriptive theory, since they frequently are so vaguely developed that explicit 

statements of their assumptions are difficult or impossible to determine.  Fortunately, CLT is not such 

a theory.   

 

Provided below is a preliminary development for a Theory of Memory and Learning that is 

retroductively-derived from CLT.  Briefly presented are the primitive terms, initial axioms, definitions 

and a few theorems of the theory.   

 

 

Theory of Memory and Learning 

 

PRIMITIVE TERMS:  Cognition, memory, working memory, consciously, cognitive load, mental 

structures, patterns, and languages   

 

AXIOM 1:  Working memory is that memory which is used to consciously process information.   

 

AXIOM 2:  Working memory has a maximum capacity identified as maximum cognitive load.   

 

AXIOM 3:  Working memory that is maintained below maximum cognitive load results in short-term 

memory acquisition.   

 

AXIOM 4:  Long-term memory is consciously processed through working memory.   

 

AXIOM 5:  Cognition is determined by a sequence of recognizable patterns or languages.   

 

AXIOM 6:  Long-term memory is short-term memory that is processed and related to an existing or 

newly developed cognitive schema, or structure.   

 

DEFINITION 1:  ‘Cognitive schemas’ are memory constructs that map short-term memory cognition 

onto devised mental structures that interpret immediate cognition.   

 

DEFINITION 2:  ‘Learning’ is defined as that processed cognitive load that results in the acquisition 

of short-term memory.   

 

As a result of these axioms and definitions, we obtain the following theorems:   
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THEOREM 1:  Information that exceeds maximum cognitive load is not cognizable.   

 

PROOF OF THEOREM 1:   

 Working memory has a maximum capacity identified as maximum cognitive load.  (Axiom 2.)   

 That which exceeds maximum capacity is not cognizable.  (Definition of ‘maximum’.)   

 

Another way of stating Theorem 1 is:  Information that exceeds maximum cognitive load is lost—

that is, the second statement of the four principles cited above for CLT.   

 

THEOREM 2:  For learning to occur, cognitive load must remain below maximum cognitive load.   

 

PROOF OF THEOREM 2:   

 Cognitive load that exceeds maximum cognitive load is not cognizable and, therefore, not 

processed.  (Theorem 1.) 

 Working memory that is maintained below maximum cognitive load results in short-term 

memory acquisition.  (Axiom 2.)   

 Short-term memory acquisition results in learning.  (Definition of ‘learning’.)   

 

Now the problem is to determine if the hypothesis relating to learning mathematics considered 

previously can be derived from this theory.  Stating the hypothesis again:   

 

HYPOTHESIS / THEOREM 3:  Students with a low-level knowledge of spreadsheets learn 

mathematics more effectively if the relevant spreadsheet skills are learned prior to attempting the 

mathematical tasks.   

 

PROOF OF THEOREM 3:   

 Students do not have cognitive schemas relating to spreadsheets.  (Assumption of Theorem 3.)   

 Students do not have cognitive schemas relating to mathematics.  (Assumption of Theorem 3.)   

 Lack of cognitive schemas precludes long-term memory.  (Axiom 6.)   

 Spreadsheet cognition precedes mathematics cognition.  (By Axiom 5 and assumption of 

Theorem 3, the spreadsheet structure provides the basic “language” by which mathematics is 

learned.)   

 A spreadsheet cognitive schema must be developed for long-term memory to take place.  

(Axiom 6.)   

 Therefore, relevant spreadsheet skills must be learned prior to the learning of mathematical 

tasks.  (Conclusion of Theorem 3.) 

 

The importance of this axiomatic development is that now a much stronger claim can be made 

concerning Theorem 3.  Whereas the initial researchers could only claim:  “These results are explained 

in terms of cognitive load theory,” it can now be claimed more strongly:  “These results are deductively 

obtained from the Theory of Memory and Learning and are validated by empirical testing.”   

But what is the far-reaching effect of this second approach?  By validating Theorem 3 the 

researchers have not only validated their “hypothesis,” but have now provided support for the theory.  

This validation has now initiated a process that, hopefully, will eventually provide a “preponderance of 

evidence” that the theory consistently provides valid outcomes.  By framing CLT as an axiomatic 

theory, every validation of a theorem (or hypothesis if you want) validates not only the theorem but the 

theory.  Eventually, we will be able to obtain theorems deductively from the theory and proceed with 

confidence that the outcome is accurate, with or without further validation.  This is very important, since 

otherwise every hypothesis must be continually validated in every new setting, in every new school, in 

every new learning environment.   

Whereas the hypothesis has been validated for this one group of students learning mathematics 

from a spreadsheet, what can we say if instead of a spreadsheet, new computer software is utilized?  

Will they have to learn the software before learning the mathematics?  At first glance, the answer should 

be “obvious” even without any testing.  But, for the sake of making a point, the point is also “obvious”—

we have already provided the proof that they would have to learn the software and we do not have to, 

once again, conduct testing to validate the theorem.   
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But now, what about results that are not so obvious?   

 

 

 

Theory of Memory and Learning—Applications 

 

Theorem 3 provided content that is not stated in the theory axioms.  Applications of this theory are 

the result of the logical process of abduction; that is, the theory content is determined independent of 

the theory and substituted for the theoretical constructs.  For example, “working memory” of the theory 

is replaced by “spreadsheet” and “mathematics” by the specific application.  Additional theory 

applications can be obtained by interpreting various cognitive schemas.   

For a non-obvious theory outcome, consider the following schemas that have been established as 

part of long-term memory:  (1) Learned behavior described as the schema “assertive”; and (2) Learned 

behavior described as the schema “attention-to-detail.”   

When students learn to keyboard it is frequently asserted that in order to improve speed and 

accuracy they must practice keyboarding.  However, if that were accurate, then anyone who has been 

keyboarding for many years should be doing so at approximately 60 words-per-minute with great 

accuracy—whereas this is not the case.  There must be more to developing speed and accuracy than 

practicing keyboarding.  From the Theory of Memory and Learning it is determined that these students 

have developed certain cognitive schemas defined as assertive and attention-to-detail that are 

independent of content.   

As a result of these cognitive schemas and the process of abduction by which theory content is 

determined, the following theorem is obtained:   

 

THEOREM 4:  Keyboarding speed can be improved by any off-task activity that increases one’s 

assertiveness; and keyboarding accuracy can be improved by any off-task activity that increases one’s 

attention-to-detail.   

 

Theorem 4 is a direct result of Axiom 6 and Axiom 5.  Theorem 4 is a non-obvious result of the 

Theory of Memory and Learning that was derived from Cognitive Load Theory.  While there is anecdotal 

evidence that Theorem 4 is valid, actual validation or refutation of Theorem 4 is left to those who are 

more skilled at constructing appropriate tests.  Whether Theorem 4 is found to be valid or not, the 

efficacy of an axiomatic theory has been demonstrated as being one that results in non-obvious 

conclusions.  And, as seen here, an axiomatic theory does not have to be formal, although the 

formalization of this theory may result in conclusions that are even more unexpected.   

The next step would be to make the theory more comprehensive.  Several theories may be related 

to CLT such as the Information Processing Theory by G. Miller (Miller, 1956), Human Memory Theory 

by A.D. Baddeley, Cognitive Principles of Multimedia Learning by R. Moreno and R.E. Mayer 

(Moreno, 1999), Parallel Instruction Theory by R. Min (Min, 1992), Anchored Instruction by J.D. 

Bransford (Bransford, 1990), and Social Development Theory by J.V. Wertsch (Wertsch, 1985), among 

others.  All of the relevant theories could be brought under one theory that provides the first principles 

from which all others are derived.  Then, all validations further not only the specific research but provide 

greater confidence in the theory that is founded on the first principles.  Such unification would provide 

a basis by which the unexpected may actually be determined rather than describing that which is already 

recognized.   
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THE RETRODUCTION AND ABDUCTION THEOREMS 
 

As previously stated, theory development, or emendation, is accomplished by a process of retroduction.  

Theory extension is accomplished by deduction or abduction.  In mathematical logic, the deduction 

theorem is of significant importance.  The deduction theorem states that if we have a conclusionary 

statement that is derived from other statements that are axioms, assumptions, or derived from axioms 

by Modus Ponens, then we can assert that such statements imply the conclusionary statement.  Formally, 

the deduction theorem is stated as follows:   

 

DEDUCTION THEOREM:  If P ⊢  Q, then ⊢ P  Q.  That is, if P yields Q, then yields P implies Q.   

 

Neither the retroduction theorem nor the abduction theorem is required for mathematical logic.  

However, for theory development in the social sciences, both are required and they must be carefully 

distinguished.  As stated initially, it should be clear that ‘retroduction’ and ‘abduction’ are not the same, 

and that they have been equated only because of “corrupted text.”   

So, what is the formal distinction between ‘retroduction’ and ‘abduction’?  Consider the following 

example.   

A direct affect relation in a behavioral topological space is defined in terms of a mathematical 

vector.  That is, it is recognized that the concept of vector is applicable to this behavioral theory.  This 

transition was recognized as a result of affect relations being interpreted as “force fields.”  That is, 

gravitational and electromagnetic force fields are vector fields; fluid velocity vectors, whether in the 

ocean or the atmosphere, are vector fields; weather pressure gradients are vector fields; and affect 

relations of an intentional system are vector fields—they are dynamic.  They exhibit both direction and 

magnitude.  They exhibit the change and flow of any other empirical vector field.   

This process of applying an interpretation to the mathematical construct vector is a logical process 

of abduction.  This is not a process of “moving backward,” but a process of “taking from.”  The 

mathematical measure is simply being applied to the content of a behavioral theory.  There is no theory 

development; there is simply an explication of the theory by mathematical means.  The important 

concept here, as defined by Steiner, is that there is no “theory development,” but “theory explication,” 

the logical process normally the result of deduction.  The mathematical concept of a vector field is 

utilized as a measure to further explicate the theory.  The concept affect relation was already in the 

theory, so it is clear that no theory development was accomplished.  Was there a retroduction of the 

“form” as a single predicate from mathematics?  No.  What is being utilized here is simply the definition 

of a vector field.  The definition of vector field is being “taken from” mathematics in order to deductively 

explicate the theory of affect relations.   

This research defines ‘retroduction’ and ‘abduction’ as distinct logical processes, and such that 

they complement the logical process of deduction and induction as follows:   

 

 Retroduction is the logical process by which a point of view is utilized to devise a conjecture 

or theory.   

 Deduction is the logical process by which a conclusion is obtained as the implication of 

assumptions.   

 Abduction is the logical process by which a theoretical construct of one theory is utilized to 

analyze or interpret the parameters of another theory.   

 Induction is the logical process by which theory is evaluated.   

 

While the Deduction Theorem is a standard part of mathematical logic, this research extends this 

analysis to include the Retroduction Theorem and Abduction Theorem.   

Steiner defines retroduction schematically as follows:   

 

Given theories A and B, theory A is a devising model for theory B if there is a subset, 

C, of A such that the predicates of B are a representation in substance or form of the predicates 

of C; whatever is true of C is true of B; and whatever is true of B is not true of A.    

 



Theory Development in Education:  Implementing the ATIS Option Set          Page 8 of 17 

 

© Copyright 1996 to 2015 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author.

 

Initially it would appear that the following implication holds:  A  B.  However, as Steiner 

points out, “The theory or conjecture that emerges (conclusion) contains more than the theory or point 

of view from which it emerges (premises).  The implication, then, can only hold from the conclusion to 

the premise”; that is, B  A.    It could be argued that the sentential and predicate logic do not hold in 

this instance.  But, if not, we are left with a state of confusion when we are attempting to develop a 

scientific theory that relies on just such logics.  Therefore, it must be assumed that the logic holds and 
we need to take a closer look at just what is required.   

Taking retroduction, as it is conceptually defined; we have that Theory A is a devising model 

for Theory B.  By this is meant that the predicates for Theory B are derived as representations from a 

subset, C, of the predicates of Theory A; that is:  

P(ĥ)B  P(h)CA. 

But also we have that Theory B results in more than what was in Theory A; since, otherwise, 

it would not be an emendation of Theory A, but simply a replication.  This emendation of Theory A 

that results in more than what is in A is formally defined as:   

P(ĥ)B[P(h)A[~(P(ĥ)B ≟ P(h)A]; 

where ‘’ is read “there exists”, ‘~’ is read “not” or “it is not the case that”, ‘∀’ is read “for 

all”, and ‘≟’ is read “is isostruct to”; and isostructism is a mapping of one entity to another 

to which it is isomorphic or isosubstantive.  (That is, “There exists a Predicate ĥ, an element 

of B, such that, it is not the case that the Predicate ĥ is an element of B is isostruct to 

Predicate h an element of A.)  This meets the final requirement by Steiner. 

.  The formal representation of ‘isostruct’ is:     

 

P(ĥ)B ≟ P(h)C =df P(ĥ)B ≅ P(h)C :: B(ĥ)B ≊ B(h) C; 

where, ‘≅’ is read “is isomorphic to” and ‘≊’, “is isosubstantive to”. 

 

Essentially, a theory is retroductively emended from an existing theory by devising predicates of 

the existing theory to represent concepts desired in the new theory; and as a result, the new theory will 

contain additional deductively-derived predicates that are not part of the existing theory—the new 

theory contains more than what was derived from the exiting theory.   

 

An isostructism is a mapping of one entity to another to which it is isomorphic or isosubstantive.  

An isomorphism is a mapping of one entity into another having the same elemental structure, whereby 

the behaviors of the two entities are identically describable by their affect relations.  An isosubstantism 

is a mapping of one entity into another having similar predicate descriptors.   

 

For example, in the devised Theory of Memory and Learning (TML):  (1) The CLT component-

relations of short-term and long-term memory are isomorphic to the component-relations in TML; 

(2) TML cognitive schemas are represented as morphisms that are isomorphic to the CLT construct 

schema; and (3) Axioms 1 to 6 are isosubstantive to the four principles of CLT or parts thereof, such 

that the affect relations of both describe similar behaviors.  Further, Theorem 4 is deductively derived 

from Axioms 5 and 6 and results in a predicate of TML that is not contained in CLT.   

 

The Retroduction Theorem is formalized as follows:   
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RETRODUCTION THEOREM:   

If {P(ĥ) | P(ĥ)B} is a set of predicates that comprise Theory B, then:    

P(ĥ)B[P(h)A[~(P(ĥ)B ≟ P(h)A],  

P(h)C  A ≟ P(ĥ)B,  

P(ĥ)B[~(P(ĥ)B ≟ P(h)A)] ⊢  

P(ĥ)B  P(h)C  A. 

 

PROOF OF RETRODUCTION THEOREM:   

For the purposes of this proof, since the conclusion is simply the result of the assumptions 

by definition, all that needs to be argued is that the Predicate Calculus applies to Theory B.  To apply, 

Theories A and B must be isostruct with respect to C.  By assumption, they are.   All we have to show 

is that P(ĥ)B represents a consistent set of predicates that have been derived from Theory A and 

that they make B a theory.   

P(h)A     Assumption 

P(ĥ)B  P(h)C  A    Assumption 

P(ĥ)B P(h)A[~(P(ĥ)  P(h))]  Assumption 

P(ĥ)B are derived from P(h)C  A  Assumption 

All we now need to demonstrate is that P(ĥ)B is a consistent theory.   

If {(ŵ,ŷ)B✕B | P(ŵ,ŷ)} ≅ {(w,y)A✕A | P(w,y)}, then all of the consistent logical conclusions 

relating to P(w,y) also apply to P(ŵ,ŷ), by substitution.    

If P(ĥ) ≊ P(h), then any component of A that satisfies P(h) has a corresponding component in B 

that satisfies P(ĥ).     

Therefore, the components, relations, and predicates which are valid for Theory A have 

corresponding components, relations, and predicates in B, resulting in the consistency of B.  By 

definition, the predicates of B comprise a theory.    

 

Essentially, since the theories are isostruct, any proof in C is applicable to a corresponding proof 

in B, since they will have corresponding axioms and assumptions.  Further, any predicate in B not in A 

can be taken as an assumption or axiom from which resulting theorems can be derived by the Predicate 

Calculus or the predicate is deductively derived from the existing predicates of B.    

The difficulty in applying the retroduction theorem is in establishing that the two predicate sets are 

in fact isostruct and represent a viable theory.  The “viable theory,” of course, is established by its 

empirical validations.   

 

The Abduction Theorem will now be proved.   

 

ABDUCTION THEOREM:   

Given Theories A and B, a subset, C, of Theory A is a formal model-of a subset, G, of Theory 
B if the predicates of G are an equivalent representation in form of the predicates of C; whatever is true 

of C is true of G; and whatever is true of G is true of C.  The formal statement of the Abduction Theorem 

is:   

P(h) ≅ P(ĥ) ⊢ P(h)C  A :≡: P(ĥ)G  B 
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:   

h  ĥ, P(h) ≊ P(ĥ), P(h) ≊ P(ĥ) ⊢ P(h)C  A :≡: P(ĥ)G  B 

 

PROOF OF ABDUCTION THEOREM:   

(1) h  ĥ        Assumption 

(2) P(h) ≊ P(ĥ)      Assumption  

(3) P(h1), P(h2), …, P(hn)C  A    Assumption  

(4) P(ĥ1), P(ĥ2), …, P(ĥn)G  B    Substitution, 1 in 3 

(5)  ∴ P(h1), P(h2), …, P(hn)C ⊢ P(ĥ1), P(ĥ2), …, P(ĥn)G  From 3 and 4 

(6) ⊢ P(h1), P(h2), …, P(hn)C  P(ĥ1), P(ĥ2), …, P(ĥn)G           Deduction Theorem on 5 

(7) ∴ P(ĥ1), P(ĥ2), …, P(ĥn)B ⊢ P(h1), P(h2), …, P(hn)C  A From 4 and 3 

(8) ⊢ P(ĥ1), P(ĥ2), …, P(ĥn)B  P(h1), P(h2), …, P(hn)C  A  Deduction Theorem on 7 

(9) P(h) ≊ P(ĥ) ⊢ P(h1), …, P(hn)C  A :≡: P(ĥ1), …, P(ĥn)B      Definition, 4 & 7 / Q.E.D. 

 

The significance of this theorem is that formal predicates of a given theory that are isosubstantive 

to formal predicates of another theory, define the properties of the second theory.  For example, as noted 

earlier, mathematical vectors can be used to analyze gravitational and electromagnetic force fields; fluid 

velocity, whether in the ocean or the atmosphere; weather pressure gradients; and affect relations of an 

intentional system.  The mathematical formulas that are used for these analyses are not changed when 

they are utilized to determine values within any of these applications—they are simply used to analyze 

various systems and obtain desired outcomes.   

 

 

 

 

IMPLEMENTING THE ATIS OPTION SET 
 

In the preceding sections the necessity of an axiomatic theory has been argued.  In addition, it has been 

shown how a hypothesis-driven methodology can be modified to develop an axiomatic theory.  And the 

place of abduction as a logical process of theory extension has been demonstrated along with providing 

proofs of the retroduction and abduction theorems.   

In this section, a methodology of theory construction from the ATIS Option Set will be discussed.   

Although only general system as defined for ATIS has been presented, it will be instructive to see 

how a theory is developed for an empirical system once a comprehensive ATIS theory is obtained.  This 

will assist in understanding the stages of development of ATIS as they are presented in future articles in 

this journal.   

Essentially, there is a five-step process for implementing the ATIS Option Set:   

 

1. Identify the problem-statement that defines the components of the empirical system 

2. Identify the affect relations of the target system 

3. Analyze the affect relations to determine relevant properties 

4. The relevant properties identify the related axioms 

5. From the related axioms, derive the theory-predicted outcomes 

 

While this process may appear to be simple, it is anything but.  The first, and possibly the most 

difficult part of the process is the first step.  The following example will help to explain the process.   

 

EXAMPLE OF ATIS-APPLICATION STEPS:   

 

Step 1:  Identify the problem-statement that defines the empirical system 

 

For our example we will use a research project from education that was designed to determine the 

extent to which student independence in a classroom improves student academic performance.  (While 
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ATIS has not yet been presented, the following discussion indicates various properties and qualifiers 

that are a part of ATIS.  As this is but a demonstration of the procedure for developing an axiomatic 

theory, such terms are to be taken at face value, as the actual presentation of the theory will be part of a 

future article.)  The initial statement of the problem was as follows:   

 

PROBLEM STATEMENT:  How can teachers foster autonomy and intrinsic motivation for learning 

in a classroom system?   

 

When working with a well-defined theory model like ATIS, we must always be careful to re-read 

the definitions of our terms.  'Autonomy' is defined as a "system that is component closed."  I do not 

believe that we want this, since no learning could then take place.  Frequently, some of our terms will 

have different meanings in the common language from that of our formal language, as is the case 

here.  Frequently, 'autonomy' and 'independence' are used synonymously in the common language, 

whereas they have very distinctly different meanings in the formal language.  What we want is 

'independence'.  And, we want the students to be characterized by independence.  So, let us restate our 

problem statement:   

  

PROBLEM STATEMENT—REVISION 1:  How can teachers foster student independence and 

intrinsic motivation for learning in a classroom system?  

  

Now let us consider the use of the term 'intrinsic'.  'Intrinsic' means an "essential or inherent" part 

of something.  If "motivation" is an "essential or inherent" part of a student's learning, then there is 

nothing to develop, since they will already have it.  Possibly what is meant is that the students are to 

develop dispositional behaviors that characterize self-motivational learning.  Further, 'intrinsic 

motivation' is not part of the formal language of ATIS, so we would either have to define it or choose 

something different.  For now, I believe that what is meant is the development of the students' 

dispositional behavior; dispositional-behavior is a part of the ATIS formal language.   

 Further, one of the Behavioral Affect Relation Qualifiers for ATIS is "Inquiry."  So, we might want 

to make the problem statement as follows:   

  

PROBLEM STATEMENT—REVISION 2:  How can teachers foster student independence and 

develop student inquiry dispositional behavior for learning in a classroom system? 

  

Now let's consider what teachers will actually do.  Will they actually "foster" student behavior, or 

"facilitate" student behavior?  For now, I will opt for "facilitating" since we already have a Facilitating 

Behavioral Affect Relation Qualifier in ATIS.  If the term 'foster' is desired, then it will have to be defined 

within the formal theory.  So, our problem statement is as follows:   

  

PROBLEM STATEMENT—REVISION 3:  How can teachers facilitate student independence and 

develop student inquiry dispositional behavior for learning in a classroom system? 

  

However, we now need to change this from a question to a statement; since we must have a problem 

"statement."  A theory describes a system; it does not ask questions about a system.  The initial assertion 

was that student independence would result in greater learning, and that seems to be the intent of the 

current proposed question.  So, combining the two, and after some further iteration, the problem 

statement is as follows:   

 

PROBLEM STATEMENT—REVISION 4:  The system is a Family of Student-Independent Systems 

such that each Student-Independent System is characterized by student-inquiry dispositional behavior 

affect relations; the negasystem is composed of, in part, a Family of Instructor-Facilitating Systems; and 

there exists an Instructional System Morphism between the two families of systems.   

  

With this problem statement, we must define Instructional System Morphism, as follows:   

  

Instructional System Morphism =df a relation between two systems that are related by Instructional 

Affect Relations, where one system is identified as a Family of Instructor Components, and the other 

system is identified as a Family of Student Components.   
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 Now we have defined a system that can be analyzed—whether or not such system will actually 

result in greater student learning remains to be seen.  But, we can now apply various properties and their 

related axioms to determine what outcomes would be expected as a result of this system structure.  This 

analysis will also answer how teachers can structure their classrooms so that the outcomes can be 

obtained.  That is, the system structure will be presented, and it is up to the teacher to assure that structure 

in the classroom.  If teachers have difficulty "letting go" of their traditional role as “controller and 

director of classroom activities,” such reluctance is irrelevant to the analysis of the system.  If they do 

not "let go," then they will not realize the benefits of the system—if such design does in fact result in 

greater student learning.   

 Implementing the system design is the same problem that engineers have when they implement 

an architectural design.  If they refuse to work with marble or cannot get the marble that is called for in 

the architectural design, then the outcome will not reflect the initial design.  The same is true for the 

teacher and the classroom.  But, such lack of implementation has nothing to do with the analysis of the 

system.   

 This is exactly why one must always define the system without preconceptions of what is possible, 

or in any way prejudice the outcomes by defining the outcomes in the initial problem statement.  Just 

define your system with a properly-worded problem statement and see what happens.   

 

 

Step 2:  Identify the affect relations of the target system 

 

In order to determine the properties of a system and then the applicable axioms and theorems, we 

will need to know very specifically what the components are and their relatedness.  These are derived 

from the initial problem statement.   

To facilitate the identification of the components and their relatedness, it is sometimes beneficial 

to construct a diagram that identifies all of the various system partitions, components and 

relatedness.  To start, we will design a system that has only one instructor-system and 3 student-

systems.  Also, we must be sure to clearly define the "universe."  From the perspective of the family of 

students, the instructor-system is in the negasystem.  The negasystem will also contain a variety of 

community-based organizations, the students' families, etc.  As a comparison, it will be instructive to 

diagram first the traditional classroom teaching structure as shown in Diagram 1.   The dotted-line 

encompasses the traditional classroom consisting of the teacher, students and facilities for learning.   
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Diagram 1 

 

 

Now, the system with which we are currently concerned might be diagramed as shown in Diagram 

2.  But, whereas Diagram 2 indicates only the main connectedness desired, Diagram 3 indicates the 

complexity of the target system that we actually have.   

The target system is the family of student-components as indicated by the rectangle surrounding 

the three students.   

Everything within the diagram outside the family of student-components is in the negasystem.   

The complexity of the analysis is increased by the fact that both the student-component system and 

the teacher-component system have all of the –put properties that will be of concern for this analysis.  

Further, each student-component has all of the –put properties due to their own individual relations to 

the teacher-component and community.   

Having obtained an initial representation of the complexity of the system, we can now specify the 

various "relations" that occur within the system.   

As described in the caption to the diagram, the three main affect relations are:   

 “Requests course information from,”   

 “Requests individual instructional guidance from,” and  

 “Provides requested instructional guidance to.”   

In addition, there are numerous affect relations from the Family of Student-Independent Systems 

to the social community and from each student individually to this social community.  Further, the first 

two main affect relations cited here will result in numerous affect relations that further the leaning of 

each student as they take initiative to achieve the learning that they have determined for themselves.   
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Diagram 2.  The teacher is in the negasystem, and Diagram 3 will more clearly 

define this relation as well as indicate additional components of the negasystem. 
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Diagram 3 
 

Family of Student-Independent Systems1 
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With respect to the affect relations, we will start by considering the following:   

 

While we have defined various affect relations relating to the learning of the students, these affect 

relations do not yet tell us anything about the effect of "control" on the learning outcomes of the 

students; that is, whether or not student-independentness results in effective learning.  To determine 

outcomes relating to student-independentness, we determine various control connectedness properties 

and analyze the results with respect to this system.  It is assumed that the following properties, each of 

which will be determined or measured for its degree of applicability to the system, influence control 

and student-independentness:   

 

Active Dependentness,  

Passive Dependentness,  

Centralizationness,  

Compactness,  

Derived production outputness (which 

is learning),  

Dispositional behaviorness,  

Efficientness,  

[All of the feedness- functions],  

Filtrationness,  

[All of the -putness properties],  

Heterarchicalness,  

Hierarchicalness,  

Independentness,  

Interdependentness,  

Regulationness,  

Spillageness,  

Stableness,  

Steadiness,  

Strainness,  

Stressness,  

Strongness,  

Unilateralness,  

Vulnerableness,  

Weakness, and  

Wholeness.   

 

 Since an affect relation is a set of connected components, it can be analyzed with respect to each 

of the above listed properties since component-connectedness defines each property.  Also, since each 

of the affect relations identified above can be analyzed with respect to all of these properties, the 

magnitude of the task becomes apparent.   

However, regardless of the complexity, the main advantage of this methodology is that it can 

actually be done, since it has been reduced to a logic evaluation.  A conventional mathematical model 

would be difficult if not impossible to use, since the equations for such relatedness are not known.  (For 

example, what is the mathematical model for “Student-A requests instructional assistance from Teacher-

M”?)  It is suggested, however, that a topological vector analysis may be applicable and will be required 

to obtain real-time outcome predictions.  The applicability of topological analyses will be considered in 

a future article.   

The next step for now is to determine how to unify all of the outcomes relating to each affect 

relation.   

First, to minimize the task, the affect relations listed above can be reduced to their main categories, 

and then we will only be concerned with the first three of those categories:   

 

 Student-Family requests instructional assistance from 

 Student requests instructional assistance from 

 Instructor provides requested assistance to  

Family of Student-Independent Systems1 

 Student-Family requests instructional 

assistance from 

 Student-Family requests course information 

from 

 Student-Family requests learning tools from 

 Student requests instructional assistance from 

 Student requests critique of academic work 

from 

 Student requests research assistance from 

 Instructor provides requested assistance to  

 

 Student utilizes learning tools 

 utilizes computer systems 

 utilizes text and resource books 

 utilizes library facilities 

 Student relies on community services 

 relates to home and family 

 relates to religious institutions 

 relates to financial institutions 

 relates to transportation systems 

 relates to business establishments 
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This analysis will be considered in a future article.   

 

 

CONCLUSION 
 

In this article, we updated the development of ATIS as represented in the fist article, we discussed 

hypothesis-based research methodologies for the social sciences and found them wanting, we 

considered the distinction between hypothesis and axiom, we took a look at hypotheses from the social 

sciences, we developed an axiomatic theory from a descriptive theory and considered an application of 

the new theory, we considered the logic of theory development and introduced abduction as a means of 

extending theory, we proved the Retroduction Theorem and Abduction Theorem, and we described how 

to implement the ATIS Option Set to derive theory.   

In future articles, the formal development of ATIS will be further explicated.   
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