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Axiomatic Logics for ATIS 
 

The Argument for a Symbolic Logic 

Elizabeth Steiner, in her book Methodology of Theory Building1, asserts:   

One must understand the many forms (kinds) of theory if one is not to apply the wrong art, i.e., if one is not 

to criticize or construct theory erroneously.   

This same word of caution needs to be applied to the choice of logic that underlies the development of theory.  

The logic of a theory provides the means by which validity of statements of the theory can be “proved” as 

“true,” and provides the means by which valid statements of the theory are derived.   

For a scientific theory, normally a symbolic logic; that is, formal logic, is desired as such provides a means to 

obtain rigorous proofs for the validity of statements.   

The logic required for ATIS will be an adaptation of the Sentential Calculus and Predicate Calculus that is 

normally used for mathematics and the mathematical sciences.  While both calculi are concerned with 

analyzing statements based only on the form of the statements, they differ in terms of the types of statements 

analyzed.  The Sentential Calculus is concerned with the form of the aggregate statement with no concern of 

what is contained within the statement.  The Predicate Calculus is concerned with the logic of predicates; that 

is, statements and their constituent parts, as related to quantifiers—normally the universal and existential 

quantifiers, although others will be required for the logic of ATIS.   

The advantage of a symbolic logic is that proofs are dependent only on the form of the statements, and not on 

their content.  The advantage is that while it may take great insight to discover a theorem, once discovered it 

can be checked very systematically.  The emphasis for theory development, however, is that the theoretician 

must continue to rely on intuition as the primary means of theory development, and the rigors of the basic 

logic are but a tool to assist in this development.   

Steiner defines ‘intuition’ as a “non-inferential form of reasoning.  It is a direct intellectual observation of the 

essence of what is given in experience.”2   

As will be discussed later, the System Logic schemas will be presented in two forms:  Those that are derived 

directly from the axioms and should, therefore, be considered directly descriptive of the system, and those that 

are “theory construction axioms” and are, therefore, to be evaluated through intuition or other analytic tools 

before being considered part of the theory.  The definition of ‘intuition’ by Charles Sanders Peirce addresses 

this desired theory-building method very directly when he states:   

Intuition is the regarding of the abstract in a concrete form, by the realistic hypostatization of relations.3   

                                                           
1 Methodology of Theory Building, Elizabeth Steiner, Indiana University, Educology Research Associates, Sydney, 1988.   

2 Methodology, Ibid., p. 93.   

3 Collected Papers of Charles Sanders Peirce, Volume 1, Principles of Philosophy, (Editors) Charles Hartshorne and Paul 

Weiss, The Belknap Press of Harvard University Press, Cambridge (1960), §1.383, p. 203.   
 



Axiomatic Logics for ATIS         Page 3 of 35 

 

© Copyright 1996 to 2016 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

While a schema can checked by following well-defined steps, a pragmatic logic must guide the development 

and acceptance of the theory.  The need for a pragmatic logic is especially relevant for ATIS System Construc- 

tion Theorems (SCTs) that are an integral part of the theory explication.  The far-reaching consequences of the 

introduction of this theory-development methodology is not elsewhere discussed in the literature, as far as this 

researcher has been able to determine, and will be only referenced herein since there may be important 

proprietary consequences resulting from its usage.  Essentially, the value of such theorem schemas will 

depend on the rules of construction that are defined for their usage.  However, they will be further considered 

in a later section, to as great a degree as possible, in the section entitled Significance of SCTs.   

While ‘formal logic’ is frequently assumed, we will state precisely what is meant by such logic.  For our 

definition, ‘symbol’, ‘language’, ‘formation’, and ‘transformation’ will be taken as primitive terms.  Then, 

formal logic is defined as follows, where “=df” is read “is defined as”:   

Formal Logic =df A language that contains— 

(1) Symbols,  

(2) Well-formed formulas derived from the symbols as determined by formation rules,  

(3) Axioms that are selected well-formed formulas, and  

(4) Transformation rules, normally consisting of only one, Modus Ponens.4   

The Predicate Calculus can be either a first-order or higher-order logic.   

In first-order logic, quantification covers only individual elements (components) of a specific type or class; 

that is, only elements of a well-defined set (class) are considered.  First-order logic results in verifying 

properties of a class or subclass of elements.   

In second-order logic, quantification covers predicates.  Second-order logic results in verifying properties of a 

class or subclass of predicates.   

In higher-order logic, quantification covers predicate formulas.  Higher-order logic results in verifying 

properties of a class or subclass of predicate formulas.   

Whereas the Sentential and Predicate Calculi provide the logical foundation of the empirical sciences, such 

application must be done with care when extending that application to ATIS.  In fact, however, the logic 

required for ATIS is less complex than that required for mathematics and the mathematical sciences, at least 

initially.  The reason is that mathematics and the mathematical sciences must consider distinctions between 

“x’s” that represent “unknown” and “variable” elements.  The “unknown” uses are referred to as the “free” 

occurrences of x, and the “variable” uses are referred to as the “bound” occurrences of x.  In ATIS, only 

“bound” occurrences of x will be required.   

For this reason, many of the problems encountered by mathematicians relating to the Predicate Calculus will 

not be a problem in the logical analyses of ATIS.  The reason is that, as noted above, ATIS does not consider any 

statement with free occurrences of x; that is, there are no “unknowns.”  As will be seen, statements with 

“unknowns” in ATIS are non-sense.  For ATIS all uses of x are bound; that is, they are variables.   

                                                           

4 It is noted that some treatments of a formal logic will also include Generalization as a transformation rule; however, in our 

logic Generalization is obtained as a theorem.   
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In ATIS, problems are not being solved in which an unknown is being sought, but what is being sought are the 

system relations that are true for all described components of a system.  The problem with seeking unknowns 

in the type of statements that are being considered is that it is difficult, if not impossible, to assign any proper 

meaning to such statements.   

For example, the following is a bound occurrence of x:   

For x  S,  

x(Ip(x)  SF  (x)); that is, “If input increases, then filtration decreases.” 

However, ‘Ip(x)’ may or may not make sense when x is an element of just any unknown system, or even within a 

known system.  That is, let ‘Ip(x)’ be a translation of “x is the increasing input of the toput subsystem.”  While this 

English sentence is grammatically correct and has a recognizable meaning, its meaning within ATIS is highly 

suspect, since the x is now an unknown, or simply fanciful.  Even if x can be construed as the input of a toput 

subsystem, x cannot be construed as “increasing” since it is but a single component.  Or if it can be construed as 

increasing, then there are other assumptions of which we are not informed.  x in this context is considered an 

unknown, or is a free occurrence of x.  It is a situation in which we would have to determine under what conditions 

and in which systems this statement would have a proper meaning.  Such statements are precluded from ATIS 

analyses.    
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Intentional and Complex Systems 

 

SIGGS Theory has been developed with a strong reliance on formal theory.  The formal theories of concern 

are symbolic logic and mathematics.  This report will explicate the symbolic logic that is used to explicate 

ATIS.   

In order to be selective of our logic, its application must be understood.  The types of systems with which we 

are concerned are Intentional Complex Systems.   

Intentional Systems: Intentional Systems are ones that are goal-oriented, or that have “intended” outcomes.   

For the analyst of general systems, an Intentional System is one that is predictable within certain parameters; 

that is, its behavior is predictable under certain system component relations.  The challenge is to determine 

which system component relations are predictable and what outcomes are obtained as a result of those 

relations.   

The problem of selecting a specific logic on which to base an analysis of general systems is that such systems 

are Complex Systems.   

Complex Systems: Complex Systems are systems that are defined by large numbers of components with a large number of 

multiple types of heterarchy connections (affect relations) that determine the behavior of the system and such behavior is 

distinct from the behavior of the individual system components.   

The challenge here is to develop an analysis that can actually analyze a very large number of relations 

with multiple types of relations.   

   

Complex Systems:  Shown above are three examples of complex systems. 

The complexity is not only in terms of the people shown, each one being a complex system, but also 

the environment in terms of the foliage, structures, pottery, etc. 
 (Photographs by Kenneth R. Thompson) 

 

In general, it has been concluded that such systems cannot be analyzed with linear logics, such as logics 

founded on implication and Modus Ponens, as are the Sentential and Predicate Calculi.  However, such 

conclusions have been founded on the beliefs that systems cannot be analyzed that have multiple relations.  

Such is not the case.   
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Yi Lin5 has defined systems with multiple relations.  It is just such systems that are required for an analysis of 

ATIS.  Further, however, the assumption that the ATIS Predicate Calculus is linear is misplaced.  By reference 

only, it is recognized that an APT analysis has been incorporated into the evaluation of this systems theory, an 

analysis that is non-linear.  The significance of this analysis resulting in a Sentential Calculus that is 

non-linear will be considered at a later time.  Further, of significance to an APT analysis is that an Axiomatic 

Temporal Implication Logic has been developed that may be of value to APT and its integration with ATIS to 

develop a non-linear logic.   

What is required for now is a formal method to analyze general systems, a symbolic logic and mathematical 

logic that formally express the properties and relations of a system such as system behavior, system structure, 

dynamic states, morphisms, etc.   

The Sentential Calculus is frequently defined in terms of truth tables that provide a truth-functional analysis of 

statements.  However, since ATIS is defined as an Axiomatic Theory of Intentional Systems, we will approach 

both the Sentential Calculus and the Predicate Calculus as axiomatic theories.  Such an approach lends itself 

to clear statements of theorems and proofs.  Further, such axiomatic logics are required since truth-table logics 

cannot address statements in general, and the complex statements of ATIS.   

Before presenting the axioms of the theory, a brief overview will help to transition from the truth table 

approach to the axiomatic approach.  For example, consider the Axiomatic Temporal Implication Logic 

shown on the next page.   

                                                           
5 Lin, Yi (1999).  General Systems Theory:  A Mathematical Approach.  Kluwer Academic/Plenum Publishers, NY.   
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Axiomatic Temporal Implication Logic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Axiomatic Temporal Implication Logic 

Temporal Implication Logic has been developed to address the logic with respect to empirical systems that have a time 

set and, therefore, a sequence of events.  The types of relations that are of concern in this logic are those where one event 

precedes another in time, and the first is considered to imply the other.  For example, the situation where feedin precedes feedout 

and there is a relation between the two that we wish to represent by an implication would fall within this classification.   

Using conventional logic, paradoxes will arise whereby equivalences will result in the conclusion implying the premise, 

an empirical impossibility since the conclusion is subsequent in time to the premise.  Temporal Implication Logic is designed to 

constructively handle temporal parameters of implication.  To distinguish Temporal Implication Logic from the implication of 

the Sentential and Predicate Calculi, a distinctive symbol will be used.  Whereas ‘implication’ for the Sentential and Predicate 

Calculi is normally designated as ‘’, Temporal Implication, TI, will be designated by ‘⊐’.   

The problem with TI is that equivalences are not valid when either predicate of the TI is negated.  All other logical 

operations and equivalences hold.  The following Axiomatic Temporal Implication Logic provides the logic required to formally 

prove theorems in an empirical theory where temporal implications occur.  For this logic, the operation for negation is not 

allowed, while all other operations can be defined in terms of ‘’ and ‘’, which are the two basic undefined operations.   

For the following axioms, F, P, Q, and R are statements, and x is a variable; i.e., a bound occurrence of x.   

TI-A.1.  P ⊐ PP 

TI-A.2.  P Q ⊐ P 

TI-A.3.  (P ⊐ R) ⊐ (P ⊐ (Q ⊐ R)) 

T-A.4.  x(P ⊐ Q) ⊐ (xP ⊐ (xQ) 

TI-A.5.  P ⊐ xP, if there are no free occurrences of x in P; i.e., no unknowns.   

TI-A.6.  xF (x,y) ⊐ F (y,y)  

For the following axioms, F, P, Q, and R are statements, and x is a variable; i.e., a bound occurrence of x.  The 

distinction between this axiom set and that of the logic of the Sentential and Predicate Calculi is that the following axiom has 

been removed:    

(P ⊐ Q) ⊐ (~(QR) ⊐ ~(RP)) 

In place of the above axiom, the following has been used:   

TI-A.3.   (P ⊐ R) ⊐ (P ⊐ (Q ⊐ R)) 

This replacement effectively precludes ~Q ⊐ ~P as a logical equivalence of P ⊐ Q.  It also precludes numerous other 

equivalences in which negation of statements occur.   

Following are the definitions of ‘’ and ‘’.  The exclusive “or,” ‘’, cannot be defined within this Temporal 

Implication Logic.   

 P  Q =df (P ⊐ Q) ⊐ Q   P  Q =df (P ⊐ Q)  (Q ⊐ P)   

This logic is designed specifically to address the problems relating to temporal implications as distinct from the 

standard logic that does not address this issue.   

In practice, when analyzing a specific system, both the TI Logic and Standard Logic will be utilized.  For any 

time-dependent implication, the TI Logic will be used.  For all other considerations, the Standard Logic will be used.   
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Symbolic Logic 

Symbolic logic is a tool designed for scientific reasoning.  In particular, it is a tool designed for ATIS reasoning, 

and also for educology reasoning; such reasoning required for a proper analysis of an Education Systems 

Theory (EST).  It is by an interpretation of ATIS that educology is explicated, and by which an EST is 

retroduced.   

It is through the use of symbolic logic that these theories are made precise and explicated.  The main reason 

for using symbolic logic is that it is a means of obtaining precise definitions for the logical consequence of one 

statement from another.  The main advantage of a formal logic is in being able to prove statements about a 

theory, and only minimally in being able to determine conclusions about the theory.  Intuitive arguments are 

the more reliable source for obtaining answers, while formal arguments are required for proving those 

answers.  For an empirical theory, like EST, answers are obtained by direct observation that have been 

predicted by the formal development of the theory and the intuitive arguments that such predictions are valid.  

That is, especially for the Theory-Construction Schemas, intuitive arguments are essential for guiding the 

application of the formal arguments.   

One of the greatest advantages of a formal logic is that it provides a precise definition for determining when 

one statement is a logical consequence of another.  When one comprehends the power of this advantage, then 

the fruitfulness of the predictive logic will be realized.   

The objective of constructing a formal logic is that it will provide the precise criterion by which instances of 

ATIS reasoning will be determined as being correct.  With this correct reasoning, one can confidently provide 

the predictions determined by the theory.   

The logical consequence of one statement from another is obtained by a sequence of well-defined statements 

such that each statement is known to be valid; that is, is an axiom, is an assumption or is derived from previous 

statements of the sequence according to specific rules of inference.   

Valid statements are only those that are axioms or are derived only from axioms.   

Rules of inference are restricted to Modus Ponens.   

 

 

The ATIS Sentential Calculus 

The ATIS Sentential Calculus is a theory of statement formulas in which the statements are translations of 

sentences within ATIS.  For ATIS, a statement is a declarative sentence that relates exclusively to system 

components, relations or properties of ATIS.  While the Sentential Calculus herein considered may be 

equivalent to that used for mathematics and the mathematical sciences, it is important to note that the extended 

logic herein considered is that developed specifically for ATIS, and is not intended to be a logic generally 

utilized by mathematicians, although it may be applicable.     

Statements will be expressed by capital letters; e.g., “P,” “Q,” etc., and are translations of their English 

sentences “A” and “B,” respectively.  All statement functions of the theory are derived from only two 

undefined functions:  ‘’ and ‘~’, which are read “and” and “not,” respectively.  [NOTE:  Other symbols than 

the ones shown may be used.  For example, at times the symbol ‘∙’ is used in place of ‘’.]    
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Therefore, ‘P  Q’ is read “P and Q,” and is a translation of the English sentence “A and B”; and ‘~P’ is read 

“not P,” and is a translation of the negation of the English sentence “A”.  While we will read ‘~P’ as “not P,” 

the English sentence may take several forms depending on what is required to assert the negation of “A.”   

A statement formula is a string of statements combined with  and ~.    

‘’ and ‘~’ are the first two functions of the Sentential Calculus:    

(1) P  Q  

(2) ~ P 

While these functions are undefined, they will be interpreted as having “truth values” (“validity values”) 

defined by the following “truth-value tables” (“validity-value tables”).  While the values are commonly 

thought of as “True” or “False,” in fact they are but assigned values with no relation to “truth.”  Instead, to 

further emphasize their application to empirical theories, they will be interpreted as “valid” and “not-valid”.  

This will be emphasized in the following tables by using ‘₸’ for “valid” and ‘’ for “not-valid.”  The “validity 

table” then simply presents the four possible combinations of ‘₸’ and ‘’ in the first table and the two possible 

combinations in the second.   

Table 1:  Validity table for the operation ‘’  

P Q P  Q 

₸ ₸ ₸ ₸ ₸ 

₸  ₸   

 ₸   ₸ 

     

 

Table 2:  Validity table for the operation ‘~’ 

P ~P 

₸  

 ₸ 

 

As demonstrated in Tables 1 and 2, the operation ‘’ takes the value ‘₸’ only when both P and Q are ₸; and 

the operation ‘~’ takes the value that is the alternative to P.    

By convention, ‘P  Q’ may be, and normally is, written as ‘PQ’.   

‘P  Q’ (“P or Q”—inclusive “or”; i.e., and/or), ‘P ⊻ Q’ (“P or Q”—exclusive “or”; i.e., not both), ‘P  Q’ 

(“P implies Q” or “If P then Q”), and ‘P  Q’ (“P if and only if Q” or “P is equivalent to Q”) are defined as 

follows:   

(3) P  Q =df ~(~P ~Q)      

(4) P ⊻ Q =df ~(~P ~Q)  ~(PQ)  
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(5) P  Q =df ~(P ~ Q) 

(6) P  Q =df ~(P ~Q)  ~(~ PQ) =df (P  Q)( Q  P)   

These six functions are the ones by which the Sentential Calculus is explicated.   

Since implication, , will be a very important function of the ATIS Sentential Calculus, its interpretation will 

be further considered.  The function ‘P  Q’ may be read in any one of the following ways, all of which are 

equivalent:     

 

Q is a necessary condition for P,  

P is a sufficient condition for Q, 

Q if P,  

P only if Q,  

P implies Q, and  

If P then Q.   

Consider a list of statements, P 1, P 2, …, P n.  Combine these statements by the use of ‘’ and ‘~’ in any 

manner desired, and call the result ‘’.  As a result of this construction of ,  will be called a statement 

formula.  A statement formula that is written using only ‘’ and ‘~’ will be defined as being in “standard 

form.”  The purpose of the Sentential Calculus is to determine when a statement formula is valid, and validity 

will be determined when the statement formula is “valid” pursuant to the validity-tables, or as a result of an 

axiomatic analysis for the Sentential Calculus.   

Validity tables can assist in determining when a statement formula is valid regardless of the meaning of the 

statements that make up the formula.  That is, in general, if the validity of the statements of a formula is 

unknown, then the validity of the formula cannot be determined.   

However, statement formula validity can be determined, regardless of the validity of the statements, when the 

statement formula has a certain structure.  For example, the statement formula “~PP” is always false and 

~(~PP) is always true regardless of the validity of P.  Validity tables can assist in determining under what 

conditions a statement formula is valid in the Sentential Calculus.  Only one example will be provided since 

discussions on truth table analyses can be found in many introductory texts on logic.   

As this is not intended to be a formal development of the Sentential Calculus, only the basic functions are 

shown as they are derived from ‘’ and ‘~’, and their validity tables will not be shown.  The reader of this 

report is encouraged to take a course in formal logic that at least includes Venn Diagrams, Syllogisms, and 

“Truth Tables” (as commonly referred to in such courses).  While these studies are a beginning for the 

comprehension of this report, it must be understood that the logic presented herein goes far beyond the scope 

of an introductory logic course.    

Consider the following statement formula:   = (P~Q)  [Q  (P  Q ~P)].   
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Although operations other than ‘’ and ‘~’ are used in this statement formula, by the preceding definitions, 

they could be replaced with ‘’ or ‘~’ thus writing the statement formula in standard form as is required.  This 

also demonstrates the need for such symbolic uses, as this statement formula in standard form would be:   

~[~(P ~Q)~[~(Q ~([~(P ~(Q ~P))~(~P (Q ~P))]))]].  

In this statement formula, ‘P’ and ‘Q’ are “parameters” of the formula.  The question to be answered in the 

Sentential Calculus is under what conditions is this formula valid?  We proceed as shown in the following 

tables.  First, the possible values of P and Q are entered, and the table is set up so as to have a column assigned 

for every statement and operation.  While ‘~’ could be given a separate column, it is normally less confusing 

to assign it to its associated statement.   In these tables, ‘₸’ designates “valid,” and ‘’ designates “not-valid.”  

Starting with Table 4, the values shown in bold print are determined from the values in italics.  The column 

designated as “5” in Table 3 under ‘’ determines the values for the statement formula under the possible 

combinations of statement validity.  By the grouping symbols, the values will be determined in the order 

designated in the last row.   

 

 

Table 3:  Assign values to “P” and “Q” 

P Q (P  ~ 

Q) 

 [Q  (P  Q  

 
~P)] 

₸ ₸            

₸             

 ₸            

             

  1 2 1 5 1 4 1 3 1 2 1 

 

 

Table 4:  Determine values of statements within the formula 

P Q (P  ~ 

Q) 

 [Q  (P  Q  

 
~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸  ₸    ₸     

 ₸     ₸    ₸  ₸ 

    ₸  ₸      ₸ 
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Table 5:  Determine the values of the innermost operations 

P Q (P  ~ 

Q) 

 [Q  (P  Q  

 
~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸ ₸ ₸    ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸        ₸ 

 

Table 6:  Determine the values of the second-level operation 

P Q (P  ~ 

Q) 

 [Q  (P  Q   ~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸ ₸ ₸    ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸        ₸ 

  

Table 7:  Determine the values of the third-level operation 

P Q (P  ~ 

Q) 

 [Q  (P  Q  

 
~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸ ₸ ₸   ₸ ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸   ₸     ₸ 

 

Table 8:  Determine the values for the statement formula 

P Q (P  ~ 

Q) 

 [Q  (P  Q  

 
~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸ ₸ ₸ ₸  ₸ ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸ ₸  ₸     ₸ 

 

 

Therefore, this statement formula is valid when P is true and Q is false, or when both are false.   
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While the above example of a statement formula is rather simple, the determination of its validity is somewhat 

tedious, and was elaborated in six steps to make that very point.  While “truth tables” can be used to determine 

the validity of many statement formulae, they are quite cumbersome when either long statement formulae are 

evaluated, or more than two different parameters are part of the formula.  For example, eight rows of values 

are required for statements containing three distinct parameters, and 16 rows are required for formulas with 

four distinct parameters.  In general, 2n rows are required for n distinct parameters.  An even more complex 

evaluation arises if; for example, a “contingent” value, C, is introduced.  In this case, two parameters would 

require nine rows, and in general 3n rows are required for n distinct parameters.   

To see the efficacy of moving from validity table analyses to axiomatic analyses, we will evaluate the 

statement formula:  P  [(P  Q)  Q] as shown in Table 9.   

 

Table 9:  Statement formula, P  [(P  Q)  Q], analysis 

P Q ~Q  [(P  Q)]  ~P] 

₸ ₸ ₸ ₸ ₸ ₸ ₸ ₸ ₸ 

₸  ₸ ₸ ₸   ₸  

 ₸  ₸  ₸ ₸ ₸ ₸ 

   ₸  ₸    

  

 

 

 

Modus Ponens 

From Table 9, it is seen that the statement formula is a tautology; i.e., it takes the value “₸” under any value of 

P and Q.  This statement formula is so important that it has been given the name “Modus Ponens.”  Expressed 

in analytic form, the statement formula is:   

P, P  Q ⊢Q 

This formula is read:  “P and P  Q yields Q.”  This formula means that if you are given P and P  Q, you 

can conclude Q.   

Modus Ponens is applied when you have either proven that P and P  Q are valid or are assumptions.  The 

importance of Modus Ponens for our theory is that it provides the one and only logical rule for proving 

theorems.   

 

 

 

 

 



Axiomatic Logics for ATIS         Page 14 of 35 

 

© Copyright 1996 to 2016 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

Modus Talens 

Another important statement formula is entitled “Modus Talens,” and has the form ~Q  [(P  Q)  ~P].  

The validity table for this statement formula is shown in Table 10.   

Table 10:  Statement formula, ~Q  [(P  Q)  ~P], analysis 

P Q ~Q  [(P  Q)]  ~P] 

₸ ₸  ₸ ₸ ₸ ₸   

₸  ₸ ₸ ₸   ₸  

 ₸  ₸  ₸ ₸ ₸ ₸ 

  ₸ ₸  ₸  ₸ ₸ 

 

Modus Talens is used when you have ~Q and P  Q.  Given these two statement formulas, you can conclude 

~P.  Formally, this statement formula is:  ~Q, P  Q ⊢ ~P.   

Numerous logical tautologies can be confirmed by the use of validity tables.  Having done so, the results can 

be used without recourse to the validity tables.  For example, by use of validity tables, it can be shown that ‘’ 

is a transitive operation.  That is, if P  Q and Q  R, then we can conclude that P  R.  With the great 

number of axioms contained in ATIS, the transitivity operation greatly facilitates the proving of numerous 

theorems.  Formally, this transitivity property is:  P  Q, Q  R ⊢ P  R.   

Applying the transitivity property of ‘’ to the following SIGGS axioms the efficacy of such formal 

treatments of theories is seen once again.   

 

Consider Axioms 144 and 150, stated as follows:   

Axiom 144:  If filtration decreases, then isomorphism increases. 

Axiom 150:  If automorphism increases, then input increases and storeput increases and fromput decreases 

and feedout decreases and filtration decreases and spillage decreases and efficiency decreases. 

 

Stated formally, these axioms are:   

Axiom 144:    I   

Axiom 150:  A  Ip  Sp  Fp  fo      SE   
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For Axiom 150, we will select only one of the conclusions, , to prove.     

Given:  Axiom 150:    A  and   

Axiom 144:    I.    

∴  A  I 

 

That is, from the transitivity of ‘’, we can obtain the theorem:  ⊢ A  Ifrom Axioms 150 and 144.     

That is, if system automorphism increases, then isomorphism increases, and no validity tables are required to 

prove this theorem.   

The purpose of a symbolic logic is to be able to consider the parameters of a theory without recourse to the 

meaning of the concepts, and the purpose of the Sentential and Predicate Calculi is to derive theorems based 

solely on the form of the statement formulas.  This task of deriving theorems can be more easily accomplished 

by the use of an axiomatic approach to the Sentential and Predicate Calculi.   

A note is required concerning the meaning of the symbols used above.  Since they are part of a statement 

formula, they must be “statements.”  For example, the above formalization of Axiom 144 is of the statement:  

“If filtration decreases, then isomorphism increases.”  Formally, this is of the form “P  Q,” where ‘P’ is 

“filtration decreases” and ‘Q’ is “isomorphism increases.”  However, there is more contained in these 

statements to actually make them “statements.”  They will be considered to read as follows:  ‘P’ is “The 

system filtration decreases”; and ‘Q’ is “The system isomorphism increases,” both of which are now 

declarative sentences about an ATIS system.  Whenever a property is cited in an axiom, it is to be understood 

that the property is actually contained within a statement.   
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Axiomatic Sentential Calculus 

Whereas validity tables are convenient for determining the validity of statement formulas, such tables cannot 

be generalized to all statements.  To date, only an axiomatic method is known that is able to obtain validations 

of general statements.  As a transition to the axioms required for validation of general statements, we will first 

consider a subset of those axioms, the validity-value axioms.  These axioms will provide an excellent 

transition to axiomatic logic, since these axioms will produce those statements considered earlier, the 

statement formulae that can be validated by use of a validity table, and, therefore can be easily validated by 

two methods—validity tables and axioms.   

In general, the axiomatic definition of valid statements is obtained by the following process:  (1) Certain 

selected statements are called ‘axioms’ (and their selection may be somewhat arbitrary and may be modified 

to achieve certain objectives); (2) A transformation rule is selected, normally Modus Ponens (although other 

transformation rules are possible; for example, Generalization or Modus Talens); and (3) ‘Valid statements’ 

are those statements that are either axioms or can be derived from two or more axioms by successive 

applications of Modus Ponens.   

It is worth mentioning again that only the form of the statements and not their meaning determines valid 

statements.   

There are three axioms of the Valid-Value Sentential Calculus and one logical rule.   

Let ‘P’, ‘Q’, and ‘R’ be statements of the theory, then— 

The logical rule is Modus Ponens and the axiom schemas are:   

(1) P  PP 

(2) PQ  P 

(3) P  Q .. ~(QR)  ~(RP) 

There are an infinite number of statements that will comprise the valid-value axioms; however, all axioms will 

be of one of the above three general forms, the axiom schemas.  Further, all theorems of the Valid-Value 

Sentential Calculus can be derived from these three axioms and Modus Ponens.   

A theorem will take the form:  P1, P2, …, Pn ⊢ Q, where the P’s are statements and Q is an axiom, or Q is 

one of the P’s, or Q is derived from the P’s by repeated applications of Modus Ponens.   

‘⊢’ is read “yield”, or in the case when we have only ‘⊢Q’ it is read “yields Q.”    

The theorem P1, P2, …, Pn ⊢ Q indicates that there is a sequence of statements, S1, S2, …, Sm, called the proof 

of the theorem, such that Sm is Q and for each Si, either:   

(1) Si is an axiom,  

(2) Si is a P; i.e., an assumption,   

(3) Si is the same as some earlier Sj, or  

(4) Si is derived from two earlier S’s by Modus Ponens.   
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The sequence S1, S2, …, Sm is a proof within the Symbolic Logic so that Q is logically derived from the 

assumptions P1, P2, …, Pn.   

The following theorems are readily provable concerning ⊢:   

Theorem.  If P1, …, Pn ⊢ Q, then P1, …, Pn, R 1, …, R m ⊢ Q.   

Proof:  Let S1, …, Ss be the proof of P1, …, Pn ⊢ Q where Ss is Q.  Clearly that same sequence will yield 

Q regardless of any additional assumptions.   

Theorem.  If P1, …, Pn ⊢ Q1 and Q1, …, Qm ⊢ R, then P1, …, Pn, Q2, …, Qm ⊢ R.   

Theorem.  If P1, …, Pn ⊢ Q1, R1, …, Rm ⊢ Q2, and Q1, …, Qq ⊢S, then  

P1, …, Pn, R1, …, Rm, Q3, …, Qq ⊢S.   

Theorem.  If ⊢Q1 and Q1, …, Qm ⊢R, then Q2, …, Qm ⊢R.   

Theorem.  If ⊢Q1, ⊢ Q2, …, ⊢ Qm and Q1, …, Qm ⊢R, then ⊢R.   

 

Since our main concern is to provide the means to explicate ATIS, the Sentential Calculus will not be further 

explicated.  The following List of Logical Schemas is provided to facilitate the explication of the theories.  

This list is not exhaustive, but does represent those schemas that lend themselves to a fruitful explication of 

the theories.  Following this list, the schemas will be used to demonstrate the value of such a symbolic logic by 

providing proofs of theorems.  It is noted that technically these schemas are not actually part of the Sentential 

Calculus but are part of the metatheory, the Meta-Sentential Calculus.  They are statements about the calculus 

that define the form or schemas that the theorems of the theory actually take.   



Axiomatic Logics for ATIS         Page 18 of 35 

 

© Copyright 1996 to 2016 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

List of Logical Schemas 

The following list of the logical schemas is provided to facilitate the proof of theorems.  The proof of 

various theorems for ATIS will be presented in a separate report.   

The “System Construction Theorems” (SCTs), derived directly from the axioms of the Sentential Calculus 

and the intuitive creativity of a researcher or interpreter, provide a means of developing the connectedness of a 

system or of determining predictive outcomes.  These should prove important in developing the system topology.  

The significance and use of SCTs will be clarified before presenting the logical schemas.   

 

Significance of SCTs 

System Construction Theorems (SCTs) provide the means to develop, enhance or further the explication of 

a theory.  The significance is that they provide additional statements than what are found in the assumptions.  

Since they are statements of the theory, however, they are valid statements, they are not just any statements 

whimsically selected.   

They may, however, be statements that are intuitively derived and thereby declared to be valid statements 

of the theory.  As an initial example; however, consider the case where the derived statement is an axiom.  As an 

axiom, it is a valid statement of the theory.   

Consider Logical Schema 3:  P  R ⊢ P  (Q  R).   

Let Q be Axiom 105 of SIGGS:  “If centrality increases, then toput decreases.”   

Then, regardless of what P and R represent, the following is valid:   

P  R ⊢ P  (“If centrality increases, then toput decreases” [Axiom 105]  R),  

where P and R are statements of the theory and P  R is assumed to be valid.   

 

For example:   

Let P be the statement:  “System complete connectivity increases”; and  

Let R be the statement:  “System feedin increases.”   

Then, P  R is a statement of Axiom 100; and, therefore P  R is valid.   
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Then, from our theorem we have:   

“System complete connectivity increases”  “System feedin increases” ⊢  

“System complete connectivity increases”  (“If centrality increases, then toput decreases”  

“System feedin increases”).   

The conclusion of this statement is equivalent to the following:   

“System complete connectivity increases”  (“centrality decreases or toput decreases”  “System 

feedin increases”).   

It is probably clear that this is a non-obvious theorem; hence the value of the formal logic is established.  

But, what does it tell us?   

This theorem provides a means to control a system.  If the target system has complete connectivity 

increasing and system feedin increasing then the assumption of the theorem is satisfied.  Now, assume that the 

target system is a terrorist system and that it is desired to decrease the complete connectivity.  One way to 

accomplish this is to decrease toput and feedin.  By decreasing toput and feedin under these conditions, system 

complete connectivity will decrease.  Further, decreasing toput decreases feedin.  Therefore, only one factor, 

toput, has to be controlled in order to achieve the objective of decreasing complete connectivity.   

This analysis demonstrates several points.  First, there are numerous non-obvious theorems that can be 

derived from a logical axiomatic analysis of the theory.  Second, some of the outcomes, as with the above 

theorem, are counter-intuitive.  In this case, the measure of complete connectivity is dependent on the potential 

complexity of the system, such complexity being degraded when toput is reduced.  Third, the SCTs provide a 

fruitful means to analyze a system, but may require the intuitive skill of the analyst.  On the other hand, where the 

logic is required for applications similar to SimEd, by defining certain “replacement” or “substitution” rules that 

will allow for selection of various properties or newly acquired data such logic can be programmed.  These rules 

will probably have to be developed by an analyst who has a grasp of the pragmatic content of the theory.   
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Logical Schemas 

 

SCTS:  “System Construction Theorem Schema”.   

Logical Schema 0:  P Q, Q R ⊢ P R   (Transitive Property of ) 

Logical Schema 1:  P Q, R Q ⊢P  R  Q 

Logical Schema 2:  P Q, R S ⊢ PR QS 

Logical Schema 3:  P R ⊢P (Q R)   (SCTS) 

Logical Schema 4:  P Q, P R ⊢ P QR 

Logical Schema 5:  ⊢Q P .. P Q  

Logical Schema 6:  If  P Q, then P ⊢ Q; and If  P ⊢Q, then P Q ::  

     P ⊢Q  ..  ⊢P Q    

     “P ⊢Q .. P Q” is the Deduction Theorem. 

Logical Schema 7:  ⊢(PP)  

Logical Schema 8:  ⊢ P .. P  

Logical Schema 9:  ⊢P  P  

Logical Schema 10:  P ⊢Q PQ      (SCTS) 

Logical Schema 11:  (QR) ⊢ R Q    

Logical Schema 12:  P Q ⊢P R QR     (SCTS) 

Logical Schema 13:  R S ⊢PR  PS     (SCTS) 

Logical Schema 14:  PQ P⊢ P (Q  R)    (SCTS) 

Logical Schema 15:  ⊢PQ R.. P (Q R) 

Logical Schema 16:  P Q ⊢P (Q R)   (SCTS) 

Logical Schema 17:  P R ⊢P (Q R)   (SCTS) 

Logical Schema 18:  P Q, P R ⊢P (Q R)  

Logical Schema 19:  P, P Q ⊢Q      (Modus Ponens) 

Logical Schema 20:  ~Q, P Q ⊢~P      (Modus Talens) 
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The ATIS Predicate Calculus 

 

While the Sentential Calculus has been well presented so as to demonstrate the usefulness of a formal logic, 

the ATIS Predicate Calculus will be only briefly discussed with what is required to understand its application 

to the analysis of the target theories.  Unlike the Sentential Calculus, however, it is important to note that this 

Predicate Calculus is distinctly different from that required for mathematics or the mathematical sciences.  

Without going into any great discussion, the reason is that for ATIS only bound occurrences of x are considered 

since free occurrences do not have any apparent meaning within ATIS.   

It was previously stated that the difference between the Sentential and Predicate Calculi was that the 

Sentential Calculus is concerned with the form of the aggregate statement with no concern of what is 

contained within the statement, whereas the Predicate Calculus is concerned with the logic of predicates; that 

is, statements and their constituent parts, as related to quantifiers—normally the universal and existential 

quantifiers.  This extension will now be considered.   

To make the transition from the Predicate Calculus required for the traditional mathematical sciences and that 

required for the mathematical science of ATIS, we will first consider the predicate notation.  The predicate 

notation will take the form of a function; e.g., P(x), where ‘x’ is an “unknown.”  If we can prove that P(x) is 

valid for the unknown ‘x’, then we have ⊢P(x).  If we have ⊢P(x) then we can replace ‘x’ with a variable and 

will conclude:  ⊢xP(x).  For ATIS, it is assumed that all predicates are bound, and, therefore, all occurrences 

of x are variables and the validity-value of all predicate functions can be determined.  Therefore, with respect 

to any occurrence of x, the task is to assert ⊢xP(x) and determine if a proof exists.    

Since Alonzo Church, in 1936, proved that there is no decision procedure for the Predicate Calculus, then the 

only affirmative conclusion that is possible concerning ⊢xP(x), with respect to the Predicate Calculus, is 

that it is valid.  If no such affirmative conclusion can be found, then nothing more can be said concerning the 

validity of the statement.  Further, the conclusion is even stronger.  Church proved that there is no decision 

procedure regardless of what axioms are considered.    

This is great news for the logician and for any researcher or analyst who is attempting to evaluate ATIS or 

an EST (Education Systems Theory).  What Church has proved is that there will always be a need for the 

researcher and analyst, since the Predicate Calculus, and the ATIS Predicate Calculus, in particular, has no 

decision procedure, and, therefore, cannot be fully programmed.  It is not asserted that the ATIS Predicate 

Calculus cannot be partially programmed, because it can be, but it cannot be completely programmed.  The 

part that can be programmed, as seen below, is that part that results from the axioms that define the ATIS 

Sentential Calculus.   

This point is worth elaborating.  This researcher has been attempting to define the scope of this theory that is 

programmable, since such programs will clearly make the theory and any of its proprietary software products 

more appealing to users.  As reflected by the extensive list of theorems that can be derived from the ATIS 

Sentential Calculus, numbering in the tens-of-thousands, and the numerous Theorem Schemas cited 

previously, it is seen that a very fruitful analysis of a system can be obtained.   
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Further, this researcher has proposed that utilizing data mining technologies can even extend the value of this 

fruitful analysis.  That is, the theory software can be used as an interpreter of the data mining structured 

outcomes, thus enhancing the time-sensitive results required in a terrorist environment, and possibly in an 

educational environment.  With this technology, it is no longer required that one must wait for a pattern to be 

determined by the data mining, but that the theory analysis will enhance the ability of the data mining 

technology to recognize patterns and predicted terrorist behavior or targets much earlier than utilizing the data 

mining technology alone.   

That said, it must also be recognized that when evaluating a specific system, the logic is only semi-decidable.  

That is, an analyst can affirmatively determine, within the theory, that a theorem is valid, but cannot, under 

any circumstances, prove that it is not-valid.  The reason for this is three-fold:  (1) As soon as an empirical 

system is recognized, the problem for the analyst reverts to considerations within the ATIS Predicate Calculus; 

(2) Church has proved that such considerations are only semi-decidable; and (3) The reason that such 

problems considered in an empirical system are only semi-decidable is that one never knows if all possibilities 

have actually been considered in the proof.  Systems, especially behavioral systems, are complex.  This must 

be recognized and recognized as something positive.  That is, the researcher and analyst have some very 

difficult tasks confronting them.   

So, is the analyst without recourse?  Not at all.  Creative proofs from outside the theory are possible.  If a 

reasoned argument can be found that can be construed as part of the logic of the meta-theory, then a particular 

theorem can be cited as being not-valid.  Once the theorem has been proved in the meta-theory as being 

not-valid, one is then justified by claiming that the theorem is not-valid within the theory.  The significance of 

this is that the results of this proof can then be inserted into the theory as though it had been proved within the 

theory.   

This researcher has previously cautioned against inserting theorems directly into a computer program that has 

been developed as a model of the theory.  However, that precaution was with respect to the ATIS Sentential 

Calculus.  The ATIS Predicate Calculus is an entirely different matter.  Whereas the theorems of the ATIS 

Sentential Calculus can be obtained directly from the axioms and, therefore, do not warrant the arbitrary 

insertion of theorems, the same cannot be said for the ATIS Predicate Calculus.  Further, there will be 

additional work for the researcher and analyst once the initial logic has been developed and implemented for 

theory model applications.  There are additional analyses that can be made with respect to empirical systems.  

It is intended that the structural properties of a system can be recognized as the topology of the system, and 

that the power of mathematical topology can be modified, as the Predicate Calculus has been, in such a way 

that the power of a modified mathematical topology can be used to assist in the analysis of a system.  Such 

analyses may also have to be performed by a researcher or analyst directly with little or no reliance on a 

computer program.  These results also will have to be manually inserted into any computer program that has 

been designed for a particular system.   

What this simply means is that researchers and analysts of behavioral systems will always have a job.  To this 

researcher, that is something to look forward to.   
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As noted previously, due to the nature of the target theories, there will be no need to distinguish between 

“free” and “bound” occurrences of ‘x’, since, without any loss of generality, all occurrences of ‘x’ are 

considered to be bound.  In view of this, we have the following axioms:   

(1) P  PP 

(2) PQ  P 

(3) P  Q :: ~(QR)  ~(RP) 

(4) x(P  Q) :: xP  xQ 

(5) P  xP 

(6) xP(x,y)  P(y,y) 

It should be recognized that the first three axioms are simply taken from the Sentential Calculus; that is, all 

such resulting theorems are still valid in the Predicate Calculus.   

As seen from the axioms, the only quantifier is the universal quantifier.  The existential quantifier will be 

defined in terms of the universal:   

xP =df ~x~P 

From this definition, we have the following equivalences:   

⊢xP  ~x~P  

⊢xP  ~x~P 

⊢~xP   ~P 

⊢~xP  x~P 

There are special conditions for  for which additional notations are desired.  These are the conditions in 

which there is exactly one x for which P is valid and when there are n x’s for which P is valid.  These notations 

are as follows:   

1xP(x) denotes that there is only one x for which P(x) is valid; and  

n
P(x) denotes that there are exactly n x’s for which P(x) is valid.   

In addition to the two quantifiers,  and , there are two additional quantifiers, one that will be used to specify 

a single component and one that will specify a class of components.  These quantifiers are the descriptor 

quantifier, , and the class quantifier, ŵ.  ‘xP(x)’ is read, “the x such that P(x)”; and ‘ŵP(w)’ is read “the class 

of w determined by P(w).”  These are defined as follows:   

xP(x) =df 
1xP(x); and  

ŵP(w) =df w(w  P(w)) 

‘xP(x)’ is the name of the unique object that makes P(x) valid.   
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The class quantifier gives a convenient means for defining a universal class and a null class.  If there are no 

w’s in P, then ŵP designates the universal class, U, if P is valid, and the null class, Ø, if P is not-valid.   

An important clarification needs to be made concerning the meaning of ‘quantifier’.  A logical quantifier 

designates a qualification of a class by indicating the logical quantity; that is, the specific components to 

which the qualification applies.  ‘P’ or ‘P(x)’ is the scope of the quantification; that is, the scope of what is 

qualified.  This will be a frequently used concept in the analysis of systems.  The ‘Logistic Qualifiers’ are 

those predicates that will be used to quantify a specific set.  For example, Toput becomes Input as the result of 

quantifying Toput with respect to the Logistic Qualifiers.  This system transition function is defined as 

follows:   

:(Tp  L i=1:n(Pi(wTp))  Ip ) = ŵIpP(wTp)      

where ‘i=1:n’ designates “i varies from 1 to n,” and ‘Pi(wTp)’ is a qualifying statement in L  with respect to 

w in Tp.   

‘ŵIpP(wTp)’ designates the Input Class determined by the Toput Class qualified by the P(w)’s in L  that make 

P(wTp) valid.   

An equivalent notation for ŵP is {w | P}, which is frequently used in mathematics.   
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Theory Building 
 

In the preceding sections, the need and requirements for an axiomatic logic have been presented.  In that 

discussion the problems relating to theory building that relies on induction, hypothetico-deductive and 

grounded methodologies were discussed.  Now we will consider some specific concerns relating to theory 

building itself.  What follows will be a discussion of several specific points and how to determine if theory 

building is actually being pursued, and if it is, what one must look for in that theory building and how to 

validate the theory once it is developed.   

First, we will consider how to determine if the validation of a hypothesis is theoretically sound.  The basic test 

is simply to ask the following question:   

Was the hypothesis derived from a theory that is comprehensive, consistent and complete; and, if so, is the 

theory axiomatic?   

With respect to the requirement that the theory be axiomatic, it is simply a recognition that only axiomatic 

theories have been found to provide the rigorous analyses required to obtain confidence in the theory results.  

If an axiomatic theory cannot be obtained, then the results can always be questioned either with respect to the 

validation process or with respect to the “underlying assumptions” that are not stated in the theory.  

Descriptive and statistical-based theories can never be individually predictive and any results can always be 

questioned with respect to the descriptive theory, and statistical-based theories, by definition, can never be 

individually predictive.   

Put another way, simply ask yourself:   

 Was the hypothesis derived from theory?  If so, what is it?   

Once the theory has been established, then the next question that needs to be addressed concerns the logical 

basis of the theory.  Most often it will be founded on a Predicate Calculus.  If so, then there are additional 

questions that relate to that logic.   

Any theorems that are derived from the Predicate Calculus are a result of the form of the theorems and not 

their content.  The theorems of the theory that are derived directly from the basic logic are true because of their 

logical structure, and not at all because of their content.   

In addition to theorems that are derived from the basic logic, there will be theorems that are derived from 

ATIS-axioms.  Further, there will be theorems that are derived from the axioms obtained as a result of the 

specific empirical system being considered.  Axioms and theorems from the latter two will depend upon the 

meaning of the terms employed within the theory or system, and not due only to their logical structure.   
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Class Calculus 
 

Before considering the axioms of ATIS and how to develop axioms for specific systems, the axioms of the 

Predicate Calculus will be extended to include the Class Calculus.  For this extension, a more precise and 

formal development of the basic logic will be presented so that a clear definition of term, statement and 

formula can be obtained.   

Stratified statements determine classes.  However, for ATIS, the initial partitioning of the system components 

and the definition of the system affect relations determine the stratification.  Affect relations are, by definition, 

one class or type higher than the system components, and there is, therefore, no confusion of types.   

A statement is determined by the following symbols:   

~        ^      “variables”: x1  x2  …  xn  x  y         “statements:”  P  Q  R  

P(x)  P(y)  P(yQ)  P(x,y)  P(y,y) 

Following are the definitions of ‘term’, ‘statement’ and ‘formula’.  Due to their use in ATIS, all variables are 

bound.   

(1) term =df  

(i) x1  x2  …  xn  x  y; where “…” has its accepted meaning 

(ii) xP 

(iii) ŵP 

(2) statement =df  

(i) AB, where ‘A’ and ‘B’ are terms, ‘A’ is a component and ‘B’ is a class, since only 

sentences concerned exclusively with classes are considered to be statements 

(ii) xP, where ‘x’ is a variable and ‘P’ is a statement  

(iii) ~P, where ‘P’ is a statement 

(iv) PQ, where ‘P’ and ‘Q’ are statements 

(3) formula =df  

(i) S, where ‘S’ is comprised of a sequence of statements constructed with ‘~’ and ‘’  

(4)  =   =df x(x  x) =df  =  =df  =x   

‘P’ is referred to as the scope of the quantifiers.     
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Definition (4) defines equality of sets.  The last notation,  =x , is very useful in ATIS.  Due to the complexity 

of systems, it may be that various properties are defined with respect to the same set of components.  Rather 

than having to consider numerous sets, the properties can be defined with respect to a specific subset.  For 

example, one may wish to determine the behavior of a system with respect to various subsets.  Such can be 

designated as follows:  S =B V; S =C L; and S =D G.  Then an APT analysis can be performed on the following 

set:  ℓ = {V, L, G}.   

With the foregoing definitions, we now have the following axiom schemas extended from the Predicate 

Calculus to include the axiom schema for the Class Calculus, Axiom (12).   

Transformation Rule, Modus Ponens:  P, P  Q ⊢  Q 

(1) P  P P 

(2) P Q  P 

(3) (P  Q)  [~(QR)  ~(RP)] 

(4) x(P  Q)  (xP  xQ) 

(5) P  xP 

(6) xP(x,y)  P(y,y) 

i. xP(x)  P(y) 

(7) x,y,z[(x = y)  (xz  yz)] 

(8) x1,x2,…,xn(xP(x)  P(yQ) 

(9) x1,x2,…,xn[x(P  Q)  (xP = xQ)] 

(10) x1,x2,…,xn[xP(x)  yP(y)] 

i. x1,x2,…,xn[xP = yQ] 

(11) x1,x2,…,xn[
1xP  (x[xP = x  P])] 

i. x1,x2,…,xn[
1xP(x)  (x[xP(x) = x  P(x)])] 

ii. x1,x2,…,xn[
1xP(x)  (y[xP(x) = y  P(y)])] 

(12) yx(xy  P) 

Axiom Schemas (1) to (3) are the valid-value axioms of the Sentential Calculus.   

Axiom Schemas (4) to (6) allow for generalization from ⊢P to ⊢xP.   

Axiom Schema (6) provides for substitution of a value for a variable.   

Axiom Schema (7) allows for substitution of equivalent terms resulting from equality.   

Axiom Schemas (8) to (11) are the axiom schemas for .   
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Axiom Schema (8) asserts that if P(x) is true for all x, then yQ is the name of one of those objects.   

Axiom Schema (9) asserts that if P and Q are equivalent for all x, then xP and xQ are names of the same 

object.   

Axiom Schema (10) allows for change of variables.   

Axiom Schema (11) asserts that if there is a unique x that makes P valid, then xP is that x.   

Axiom Schema (12) is the schema that introduces classes.  This axiom allows for the Set Calculus to be 

integrated into the formal theory.   

 

 

Relation Calculus 
 

For ATIS, we are concerned with attempting to use as many mathematical constructs as possible while clearly 

describing the desired system properties.   

While mathematics is frequently concerned with functions, for ATIS the concerns may be directed more toward 

relations.   

However, while functions are normally considered as being single-valued, many-valued functions are 

possible.  The relation ⟦x,x2⟧ is a multi-valued function.  ⟦x,x<y⟧ also is a multi-valued function.  These are 

well-defined functions since the ordered pairs that define the functions are well-defined.  Whether or not these 

are considered functions or relations is not clear; that is, there does not seem to be any clear distinction 

between the two.  With ‘function’ being restricted to single-valued functions, these examples would be 

considered as relations.  One distinction has been that ‘function’ was restricted to relations that resulted in 

well-defined curves, whereas ‘relation’ would be for those statements that defined all other characterizations.  

Thus, ⟦x,x2⟧ would be a function, and ⟦x,x<y⟧ would be a relation.   

In ATIS, the distinction between ‘function’ and ‘relation’ will not be considered.  The only question is whether 

or not the appropriate mathematical construct clearly portrays the system characteristic being considered.  It 

appears as though most of the concerns for ATIS will be with respect to morphisms; that is, relational 

mappings.  Whether such mappings are ‘functions’ or ‘relations’ is moot.  If a single-valued function is 

required, then such can be stated.  For purposes of analysis, morphisms or relations will be considered, since 

functions are a special type of relation.  Further, where the “function notation” is used, it is not to be construed 

as restrictive.  Normally, it will probably designate a single-valued function, but such in this theory is not 

required.  Either the context or by definition, the type of function will be determined.   

The Relation Calculus for ATIS is concerned with the affect relations that define a system and the morphisms 

that characterize the properties of the system as derived from those affect relations.   

The Relation Calculus axiom schemas will be presented first.  This will complete the presentation of the 

formal logic.   

Following the presentation of the formal logic, the content required for a General System Theory will be 

introduced.  First, the axiom that asserts the existence of a General System will be introduced.  Then the 

axioms that establish the empirical systems that are to be analyzed and the criteria for such analysis will be 

given.   
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We have already introduced the notation that will be used to identify a class or set of objects, or components, 

ŵP(w).  Now the characterization of those components will be discussed.   

Whereas x identifies a single component within the set, it may be that we wish to identify an object that 

consists of two or more components.  The following notations will be used to identify such sets.   

‘{x, y}’ identifies a component of a set that consists of  two single components.   

If it is desired to specify that the set consists only of binary-components, then the following notation will so 

indicate:  ŵ2
P(w).  This notation designates that the class or set of components consists only of sets each of 

which contains two single components.   

Hence, ‘ŵ2
P(w)’ designates a family of binary sets.   

By extension, ‘ŵn
P(w)’ designates a family of sets, each member of which contains n components; that is, 

{x1, x2, …, xn}iw.   

For affect relations, an additional type of set will be required.  This set will contain binary-components and a 

set that contains one of the binary-components in a unary-component set.  That is, the set will be configured 

by the following representation:   

{{x}, {x, y}} 

Where each unary-, binary-component set is included and no other sets are included.  This notation is 

frequently represented by the ordered pair:  (x,y).   

For this set, the class quantifier will be represented as:  ŵ2|1
P(w).   

By extension, ‘ŵn|n-1|…|1
P(w)’ designates a family of sets that include all and only those ordered subsets of the 

largest set.  For n = 4, the family of sets would be characterized by components of the form:  {{a}, {a,b}, 

{a,b,c}, {a,b,c,d}} = (a,b,c,d), an ordered 4-tuple.   

With the foregoing definitions, we now have the following axiom schema for the Relation Calculus, Axiom 

(13), which introduces relations.   

Axiom (13)  zx,y({x,y}z  {x}z  R 

 

The following axiom schemas provide for substitution within and identification of relations.   

 

Axiom (14)  xR(x)  R(yQ) 

Axiom (15)  x(R  Q)  (xR  xQ) 

Axiom (16)  (x,y)R(x,y)  (p,q)R(p,q))  

 

Axiom Schema (14) asserts that if R(x) is true for all x, then yQ is the name of one of those relations.   

Axiom Schema (15) asserts that if relations R and Q are equivalent for all x, then xR and ixQ are names of 

the same relation.  This is a critical axiom for determining morphisms.   

Axiom Schema (16) allows for change of variables.    
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ATIS Calculus 
 

In the preceding sections, the formal logic has been established.   

Now, the calculus must be developed that begins to provide the substance for the desired theories.  These 

theories are descriptive of what will be called General Systems.  Therefore, the first axiom will introduce the 

characteristics of a General System.   

The development of the calculus that results in the empirical theory is dependent upon the concept of an 

Options Set.  The Options Set is that listing of Properties and Associated Axioms that will result in a 

system-descriptive theory that will be analyzed pursuant to the derived formal logic herein established.  The 

specific Options Set herein developed is the ATIS Options Set.  This set will consist of the derived list of 

properties, and all General System axioms that are associated with those properties.   

An analysis of a system is obtained by determining those properties that are descriptive of the system.  Those 

properties are then identified in the ATIS Options Set.   Following identification of these properties, the 

Associated Axioms are then selected.  Associated Axioms are those in which one or more of the selected 

properties occur.  With the selection of these axioms, an analysis of the system is possible using the Predicate 

and Relation Calculi herein developed.   

It is also intended that a topological analysis will eventually be possible either by the direct use of operations 

taken from mathematical topology or a derivation thereof.  Such an analysis, along with other analytic 

techniques, is beyond the scope of this report.   

The following axiom asserts that if we have a set of a specific system defined by components and a set of that 

system defined by relations of those components, then we have a General System that can be characterized by 

ATIS.  Axiom Schema (17) is the General System axiom scheme.   

Axiom (17)  ŵP(w)  Sx  ŷP(y)  S  G(Sx,S)  

The affect relations, S, determine the properties, P, of an Intentional General System.    

 

Axiom (18) asserts that if we have an Intentional General System, IG, then for every property, P, there exists 

a property qualifier that determines the class ŵP(w).   

Axiom (18)  IG  P(w)ŵ(ŵP(w))   

 

The following axiom asserts that if we have a property class then there is a morphism that can be defined 

between that class and another property class.   

Axiom (19)  ŵP(w)  XŷP(y)(X(ŵP(w)  ŷP(y))) 

 

ATIS Options Set Defined 

The ATIS Options Set, , is defined by the set of system properties, P, and system Affect Relations, A.   

 =df ŵi=1:nPi(wi) ⋃ ŷj=1:nAi(yj)    
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Definitions of Logical Operations in Proofs 
 

In addition to the logical schemas presented above, some proofs of theorems may require an application of the definition of the 

logical operations.  An example is given below.   

The following operations were previously defined:   

Definition. P  Q  =
 df

 (PQ) 

Definition. P  Q  =
 df

 (PQ) 

Definition. P  Q  =
 df

 (P  Q)  (Q  P)  ..  (PQ) (QP) 

 

The following theorem demonstrates an application of the use of definitions in the proof of a theorem.   

Theorem.   ⊢
 HO
 c  

F
 c  

S
 c      “If hierarchical order is constant or increasing, 

        or if flexibility is constant or decreasing, then 

        strongness is constant or decreasing.”      

    

Proof:  1.  
S
  

HO
     Axiom 55; i.e., “If strongness increases, then  

         hierarchical order decreases.” 

  2.  
S
  

F
      Axiom 56; i.e., “If strongness increases, then  

         flexibility increases.” 

  3.  
S
  

HO
  

F
     Logical Schema 4 

  4.  (
 HO
  

F
)  

 S
  Logical Schema 5 

  5.  
HO
 c  

F
 c  

 S
  Definition of ‘’  

  6.  
HO
 c  

F
 c  

S
 c    Logical Equivalence of ‘’ 

  7.  ⊢
 HO
 c  

F
 c  

S
 c     Q.E.D.6 

 

 

 

                                                           
6 “Q.E.D.” comes from the Latin quod erat demonstrandum, “that which was to be demonstrated”; or, in mathematics, “that 

which was to be proved.”   
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Axiom 181 is a Theorem 
 

With the number of axioms presented for the theory, it is possible that some of the axioms are in fact 

theorems; that is, they are derivable from the other axioms.  Such is the case with Axiom 181.   
 

 Axiom 181 states: Z  X +c
 C
.     

That is:  “If size increases and complexity growth is constant, then centrality decreases.”  

 

This statement will now be proved as a theorem.   

 

Theorem 181.  ⊢ Z   X +c
 C
  

 

Proof: 

1. Z   X +c Tp   Axiom 194; i.e., “If size increases and complexity 

       growth is constant, then toput increases.”  

  2. Tp   
C
   Axiom 90; i.e., “If toput increases, then centrality 

         decreases.” 

  3. Z   X +c
 C
  Logical Schema 0 (Transitive Property)  

        on Steps 1 and 2 

  4. ⊢ Z   X +c
 C
  Q.E.D. 
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Inconsistent Axioms 
 

Certain axioms of the SIGGS Theory have or will be found to be inconsistent.  That is, they are 

inconsistent when combined within the same theory.  This does not mean that either axiom is “wrong” or “false” 

or “not-valid.”  It simply means that they cannot be taken together in the same theory.  No determination will be 

made at this time as to which axiom is more appropriate for the theory.  It may simply be that several theories will 

be developed from the SIGGS Theory axioms.   

The following pairs of axioms have been found to be inconsistent and will be so proved below:  Axioms 

55 and 112, Axioms 90 and 106, and Axioms 175 and 183.   

 

Theorem 55-112. ⊢ ~(
S


HO
 :: 

S
  

HO
 c 

R
) 

   That is:  “⊢ ~(Axiom 55 :: Axiom 112)” 

Proof:   

1. 
S


HO
    Axiom 55; i.e., “If strongness increases, then 

       hierarchical order decreases.” 

2. 
S
⊢ 

HO
    Deduction Theorem on 1 

3. 
S
     Assumption from 2 

4. 
HO
     Modus Ponens on 3 and 1 

5. 
S
  

HO
 c 

R
   Axiom 112; i.e., “If strongness increases and  

        hierarchical order is constant, then     

     regulation decreases.” 

6. 
S
  

HO
 c 

R
   Logical Equivalence 3 on 5 

7. 
S
 ⊢ 

HO
 c 

R
   Deduction Theorem on 6 

8. 
S
, 

HO
 c ⊢ 

R
   Deduction Theorem on 7 

9. 
HO
 c     Assumption from 8 

10. 
HO
 

 HO
 c    From Steps 4 and 9 

11. 
HO
 

 HO
 c    Contradiction of ‘’ 

12. ⊢ ~(
S


HO
 :: 

S
  

HO
 c 

R
)  Q.E.D. 
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Theorem 90-106. ⊢ ~(Tp 
 C
::

C
  

S
  Tp) 

   That is:  “⊢ ~(Axiom 90 :: Axiom 106)” 

Proof:   

1. Tp 
 C
    Axiom 90; i.e., “If toput increases, then  

       centrality decreases.” 

2. Tp ⊢
 C
    Deduction Theorem on 1 

3. Tp       Assumption from 2 

4.  
C
     Modus Ponens on 3 and 1 

5.  
C
  

S
 Tp   Axiom 106; i.e., “If complete connectivity  

       increases or strongness increases, then  

       toput increases.” 

6.  
C
 Tp    Assumption of Case on 5 

7.  
C
 ⊢Tp    Deduction Theorem on 6 

8.  
C
     Assumption from 7 

9. 
C
  

C
    From Steps 4 and 8 

10. 
C
  

C
     Contradiction of ‘’ 

11. ⊢  ~(Tp 
 C
::

C
  

S
  Tp)  Q.E.D.  
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Theorem 175-183. ⊢ ~(X
  Z  

D
 :: Z  X

  
 D
) 

   That is:  “⊢ ~(Axiom 175 :: Axiom 183)” 

Proof:   

1. X
   Z   

D
  Axiom 175; i.e., “If complexity degeneration increases,  

      then size degeneration increases or  

      disconnectivity increases.” 

2. X
  ⊢ Z   

D
  Deduction Theorem on 1 

3. X
     Assumption from 2 

4. Z   
D
   Modus Ponens on 3 and 1 

5. 
D
     Assumption of Case on 4 

6. Z   X
  

 D
   Axiom 183; i.e., “If size decreases and complexity  

      degeneration increases, then disconnectivity  

      decreases.” 

7. Z   X
  ⊢

 D
    Deduction Theorem on 4 

8. Z   X
      Assumption from 5 

9. 
D
      Modus Ponens on 6 and 4 

10. 
D
  

D
     Steps 5 and 9 

11. 
D
  

D
     Contradiction of ‘’ 

12. ⊢ ~(X
  Z   

D
 :: Z   X

  
 D
) Q.E.D. 

 

 

 

 


