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Axiomatic Theory of Intentional Systems (ATIS) 

 and Options-Set Analyses for Education 
 

 

 

Abstract 

Axiomatic Theory of Intentional Systems (ATIS) is a scientific theory that 

provides the means to evaluate learning and any other intentional-systems 

environments without having to conduct extensive empirical hypothesis-based 

research, thus saving time and money, and possibly years of waiting to determine 

whether a proposed change to a learning environment actually results in the 

desired outcomes.   

The Options-Set is simply Relation-Set and Object-Set that generates the 

System-Properties, and thereby the Axiom-Set that generates the theorems of the 

theory; that is, the outcomes of the system.   

The objective of this theory is to provide the means to obtain an individual 

theory for each application of an Options-Set, thus making it possible to obtain 

actual individual results for specific schools rather than just a statistical 

probability that a proposed change may obtain the desired results—ATIS provides 

for scientific certainty not possible with hypothesis-driven research.   

ATIS is an emendation of SIGGS that was developed by Steiner and 

Maccia (1966), and incorporates research, in particular, by the biologist Ludwig 



von Bertalanffy (1972), the engineer and mathematician Mihajlo D. Mesarović 

(1972), and the mathematician Yi Lin (1999).   

ATIS has been developed by means of the logical process of retroduction 

whereby one theory, SIGGS, is used as a model for developing another theory, 

ATIS.    

The results of utilizing ATIS to predict education outcomes of individual 

school systems can be visualized by the Power Point demonstration of just such 

an application to a school system, Predicting Outcomes of Systemic Change in 

Education, an analysis that demonstrates the application of axioms and theorems 

for determining education outcomes.   

The demonstration can be seen at:   

https://www.indiana.edu/~tedfrick/aect2006/POSCEaect2006.ppt. 

Further, the dynamic properties of a general system as defined by ATIS 

can be visualized by the demonstration seen at the following link:  

http://educology.indiana.edu/Thompson/ATIStutorials.html  

 

Introduction 

This report provides developments of Thompson’s Axiomatic Theory of 

Intentional Systems (ATIS) and ATIS-Analyses as they provide predictive outcomes 

for education systems.  ATIS, founded on an emendation of General Systems 

Theory, provides the means to predict events individually, rather than having to 

wait for “patterns” to develop as is required with data-mining analyses.  In this 

way we can predict; for example, what would happen in an education system if 

https://www.indiana.edu/~tedfrick/aect2006/POSCEaect2006.ppt
http://educology.indiana.edu/Thompson/ATIStutorials.html


certain modifications are implemented without having to wait for 12 years or 

more to see if the changes will actually result in the desired outcomes.  Further an 

ATIS-topological-analysis provides the means to effectively integrate and use 

metadata in a manner that provides real-time results and yet maintains personal 

security that is of concern to everyone in a free society.  This development is 

discussed since it is critical to being able to implement changes in a system 

immediately and know immediately what the outcomes will be if the changes are 

implemented.  While the full value of topological analyses have not been 

developed in this report, the properties of a topology that should be of value are 

presented, as well as a constructive decision-procedure for determining a topology 

for any intentional system is given.   

Of significant importance to education theorists is the development of a 

means to convert hypothesis-driven research to an axiomatic theory that has real 

predictive outcomes for education systems.  The value of an axiomatic analysis 

was shown above by PESO and the Adobe Flash Player demonstration of ATIS 

applications that shows how axioms help to predict what will happen when certain 

changes are made in an education system.   

After viewing those presentations, consider the following application of 

ATIS to an actual problem encountered in a school system in Oregon, and see how 

ATIS could have provided a solution to their problems.    

 



 

An ATIS -Analysis for Decision-Making:   

Successful Implementation of a “Small Schools” Project 

From a report concerning the implementation of a “Small Schools” project 

in Lebanon, Oregon (see article at the following link:  Small Schools  Project, Lebanon, 

Oregon); it appears as though there is a disjunct between the plan and its 

implementation leading to dissatisfaction with the plan, when in fact the problems 

appear to be mainly in the implementation of the plan.   

From economic theories’ economies of size, it is known that 

organizationally there are savings that generally accrue due to control by large 

school systems.   

From pedagogic theories it is known that intimate organizations, not 

necessarily small, result in better academic outcomes.   

Both of these theories are confirmed by ATIS wherein economies of size 

are the result of the system property wholeness and academic outcomes are the 

result of the system property interdependentness.   

From ATIS, we have the following axioms:   

70. If wholeness increases and hierarchical order is constant, then integration 

increases. 

63. If interdependence increases, then complexity growth increases. 

That is, from Axiom 70, by maintaining the normal hierarchical structure 

of the school system while increasing the wholeness of the system; that is, the 

number of affect relations, then integration increases.  In the case of economic 

wholeness, economic integration means that there is more economic control.  

Essentially, from Axiom 70, we see that the larger the system, the greater the 

economic efficiency.   

From Axiom 63, we see that as classroom interdependence increases, the 

greater classroom complexity growth is realized.  Where the classroom 

interdependence is related to learning activities, the greater the learning is that 

results.  When this classroom interdependence can be best realized in smaller 

classes, then the smaller classes will result in greater learning.   

The goal, therefore, is to obtain the economic returns that accrue from 

economy of size resulting from large school systems, while applying an intimate 

http://educology.indiana.edu/Thompson/SYSTEMS%20THINKING--Backlash%20Builds%20Against%20Small-Schools%20Project%20in%20Lebanon,%20Oregon.pdf
http://educology.indiana.edu/Thompson/SYSTEMS%20THINKING--Backlash%20Builds%20Against%20Small-Schools%20Project%20in%20Lebanon,%20Oregon.pdf
http://www.indiana.edu/~aptac/glossary/atisWholeness.pdf
http://www.indiana.edu/~aptac/glossary/atisIndependentness.pdf
http://www.indiana.edu/~aptac/glossary/atisWholeness.pdf
http://www.indiana.edu/~aptac/glossary/atisHierarchiness.pdf
http://www.indiana.edu/~aptac/glossary/atisIntegrationness.pdf
http://www.indiana.edu/~aptac/glossary/atisInterdependentness.pdf


organizational structure that realizes the close relationships required for individual 

student academic success.   

This is where ATIS and its applications developed by Theodore W. Frick, 

can be most valuable.  See Professor Frick’s analysis at:  
 https://www.indiana.edu/~aptfrick/overview/ 

Predicting School Outcomes Before Expending 

Thousands of Dollars—The Systemic Approach to 

Change 

The problems in Lebanon, Oregon, highlight the problems of restructuring 

school systems throughout the United States.  We will consider the problems 

reported there and the alternative solutions that would have realized a better 

outcome for the school system as an example of what ATIS and its applications can 

do to help solve these problems before expending thousands of dollars on a 

project where it is known that it has little chance of success before it starts.   

The “Small Schools” concept is clearly stated in the Lebanon report:   

The idea behind small schools conversion is simple:  Students in large, 

anonymous high schools are separated into groups of about 300 apiece, 

often according to academic interest, and go through high school 

together, with the same group of teachers for all four years.  The idea is 

for teachers to get to know students beyond just a name that disappears 

after nine months slouching at the back of the classroom.   

However, the implementation of this vision was that the school actually 

had to be separated into four different buildings.  The economic results should 

have been clear from the beginning as subsequently recognized by Rick 

Alexander:   

School board chair Rick Alexander said he had long been concerned 

about the higher administrative costs that small schools bring, since each 

of the schools-within-a-school has its own principal, and with replication 

of core curriculum courses in each of the four academies. 

What is needed, however, is a large-school structure with a small-school 

feel.  This is what is meant by the intimate organization regardless of 

organization size.  There is nothing inherent in the concept of “Small Schools” 

that says that the schools actually have to be small organizationally.  Consider the 

problems cited at Lebanon.   

But first, why was change even considered?   

https://www.indiana.edu/~aptfrick/overview/


Lebanon was dogged for years by a worrisome dropout rate. 

This is a serious problem, at least for educators.  However, in Lebanon one 

has to consider the community, a community that may not value education 

beyond its ability to produce farmers and labor for the local market and for whom 

the dropout rate was really not that important.  Consider:   

[In Lebanon] where grandfathers and fathers once went to work in the 

mills straight out of high school, there was outrage that the high school's 

new incarnation was more focused on collegiate prep classes, and less on 

vocational education. 

The groundwork had simply not been done to determine whether change 

was even appropriate for this community.  This is the first principle when viewing 

a problem systemically—have all factors that affect the outcome of a plan been 

considered?  If there is a basic resistance to the change, then it is not worth the 

financial expenditure to force the change.   

ATIS is founded on the concept of affect relations.  Affect relations 

determine the structure of the system which in turn determines its outcomes; that 

is, the predictions of what will happen as a result of these affect relations.  Even 

intuitively, it should be clear that where there are resisting affect relations that 

these will make it difficult if not impossible to carry out objectives which these 

affect relations oppose.  Affect relations for change must be weighed against 

resisting affect relations to change to determine the strength of each and which 

will dominate the system.  This can be done even without a rigorous logico-

mathematical analysis of the system parameters.   

For any school system, and, in particular, for school systems in small 

communities, it should be clear that the affect relations established by the parents 

and even the students of the community will have a substantial effect on the 

ability to induce change in that community.  Where those influences are contrary 

to the planned change, the likelihood of success in carrying out the planned 

change is greatly compromised.   

Unfortunately, the desire to “forge ahead” will meet with less-than-

expected results.   

Even the biggest local boosters of small schools, like Lebanon 

Superintendent Jim Robinson, concede that some changes [from those 

planned] will need to be made, like restoring some vocational emphasis. 

Still, Robinson said Lebanon will forge ahead, even without the Gates 

grant. 

http://www.indiana.edu/~aptac/glossary/atisAffectRelationSet.pdf
http://www.indiana.edu/~aptac/glossary/atisPredictiveness.pdf
http://www.indiana.edu/~aptac/glossary/atisStrongness.pdf


Unfortunately, pursuant to ATIS, making “some changes” will not solve the 

problem since the problem is systemic and any change changes the system.  If the 

impact of a change on the entire system is not considered, then the actual outcome 

will be distinctly different from what is intended.  What could have been done may 

have been relatively simple and would have cost far less in initial capital outlay.  

Once again, let’s get back to see what the problems are as stated by the residents of 

Lebanon.   

In Lebanon, scheduling problems abounded, frustrating teachers who 

were already skeptical after years of seeing new fads in education tried, 

then discarded.  Test scores and other academic indicators haven't 

budged, and there were widespread fears that the school was fragmenting 

too fast, a particularly touchy subject in a smaller city where community 

is forged on the football field and at graduation ceremonies. 

The most significant thing about the above observations is that it, once 

again, indicates the lack of basic support for the change.  Teachers were already 

skeptical, thus not completely supporting the change.  Hence, the resisting affect 

relations to change compromised the efforts for change.   

Systemic change requires initial system-wide support of the change.  This 

is as much of a sales and promotional effort as an organizational effort.  However, 

the financial outlay should not be made until it is clear that the basic support has 

been obtained to make the venture a success.   

The “scheduling problems,” however, should not have been a problem.  

There is nothing easier to do than schedule classes when appropriate software is 

available and the school system is structured to assure desired scheduling 

outcomes.  This is accomplished by implementing the large-school structure with 

a small-school feel.  And this solves the student problems also.   

Forging community unity on the football field and at graduation ceremonies?  

The “problem” answers itself—all four “schools” function as one when it comes to 

football games and graduation ceremonies.  This has been the solution in many 

larger cities with “Charter Schools” that do not support athletics and other 

extracurricular programs.  Quite simply, the students go to where the athletics are 

offered and all graduate in one ceremony.  This seems to be a “problem” where there 

is none.   

Students were upset at being separated from friends who had been 

assigned to other "learning academies", annoyed that they could no 

longer arrange to be in a particular teacher's classroom, and worried that 

their choice of courses had been narrowed. 



"It really ticked me off," said Dallas Oeder, 16. "I couldn't take all the 

classes I wanted to." 

There is no separation from friends when all students remain in the same 

building, and where the “learning academies” are with respect to curriculum 

structure only.  There is nothing in a large school organization that precludes 

students from being with the same teachers throughout their high school career.  

And, if a student from outside their clique decides to take a course offered only by 

a certain “academy,” then it is an easy scheduling problem to put the student in 

the class for that year, or half year, depending on the desired course.  Further, 

under such a structure, there is no narrowing of available courses.  And, no 

student should ever have to say:  “I couldn’t take all the classes I wanted to.”  

Never should school structure preclude a student’s education.   

As seen from the lessons in Lebanon, Oregon, the solution to expenditure 

of funds for the outstanding results of the “Small School” movement is to make 

certain that a proper systemic analysis of the school system is initiated first.  ATIS 
and its applications can predict the expected outcomes of a reorganization before 

large amounts of capital are expended.   

Further, ATIS and its applications can help to assure the support of the local 

community before any reorganization is implemented by focusing on those groups 

who have to be convinced of the viability of the reorganization in order to assure 

its success.    

When moving into small communities steeped in tradition and education 

expectations, it is recommended that the desired approach should be:  large-

school structure with a small-school feel.   

ATIS and its applications can assist in this analysis and design, and predict 

reorganization outcomes prior to the expenditure of large amounts of capital.   

For the Educologist, we will now consider how to use ATIS directly for 

analyzing a school system; and then, what must be done to directly develop 

education theories.  In order to directly develop education theories we must 

determine how to convert hypotheses to axioms so that ATIS can be utilized to 

analyze a specific school system that will address specific questions concerning 

that school system.    

 

 



 

Background Reports and Developing Education Theory 

However, to get a better understanding of how ATIS was developed and 

what it can do, please see the background and development of General Systems 

Theory from which ATIS is derived, and to see the technical background upon 

which ATIS is based, by going to the reports at the following links.    

General Systems Theory (GST):  GST Background Summary / Critical Developments 

for a Logico-Mathematical Theory / A Purposeful Existence and Operation Implies 

Predictability / Intentional Systems Theory 

Developing an ATIS-Topology:  Topology and Intentional Systems Theory / Properties 

of Topological Spaces for an Intentional Systems Theory / Topological Vector Fields 

/ Constructive Development of a Topology for an Intentional System 

ATIS Theory Development:  ATIS Properties (Basic Properties / System / General 

System / Affect Relations / Transition Functions / Descriptive Analysis of General 

System / Affect Relation Properties) / [Graph-Theoretic Connected Properties / 

Information Theoretic Properties] 

 

It is recommended that as many of the above reports be read as is possible and 

necessary before proceeding.   

There is a long history in the social sciences of researchers attempting to 

develop a consistent and comprehensive theory of education, theory of 

learning, theory of behavior, and other theories of concern to social scientists, 

but to no avail.  And, even with this failure, they persist with the following 

lament by Ary, D., Jacobs, L. C., & Razavich, A. (1985, p. 19):   

In spite of their use of the scientific approach and accumulation of a 

large quantity of reliable knowledge, education and the other social sciences 

have not attained the scientific status typical of the natural sciences.  The social 

sciences have not been able to establish generalizations equivalent to the 

theories of the natural sciences in scope of explanatory power or in capability to 

yield precise predictions.   

What they fail to recognize is the reason for this lack of theory 

development.  It would seem that with over 100 years of failure, one would begin 

to look for the reasons that the achievements of the physical sciences have not 

been attained in the social sciences.  How many more decades, scores, or 

centuries is it going to take before educologists and social science researchers 

realize that an “accumulation of a large quantity of reliable knowledge” does not 

http://educology.indiana.edu/Thompson/SYSTEMS%20THINKING--Geneeral%20Systems%20Theory.pdf
http://educology.indiana.edu/Thompson/SYSTEMS%20THINKING--Developing%20an%20ATIS%20Topology.pdf
http://educology.indiana.edu/Thompson/SYSTEMS%20THINKING--ATIS%20Theory%20Development.pdf


result in theory?   

What we will herein determine is that first, the “scientific approach” is not 

even used by physical scientists, regardless of their claims to the contrary, and 

second, an “accumulation of a large quantity of reliable knowledge” does not 

result in theory.   

What we will do is present an empirical theory for intentional systems that 

is applicable to all of the social sciences, and that the theory must be developed as 

an axiomatic theory.   

In order to get the most out of this report, certain background is necessary.  

This report is presented both in a descriptive manner as well as mathematical.  

But for either approach, there is one work that should be read before proceeding 

too far with this report.  That work is the seminal work prepared and published by 

Steiner, E. (1988) on theory construction:  Methodology of Theory Building.   The 

research provided therein is critical reading for any serious reader of this study.   

Further, a background or at least a basic knowledge of logic and 

mathematical logic, in particular, is necessary to understand some of the more 

technical work in this report, although one can proceed without it and those that 

are interested in such background can go to the links provided for such 

background.  However, the theory can be comprehended even without that 

mathematical background.   

This report should be of value to anyone interested in the social sciences 

and, in particular, one who is attempting to develop a theory within the social 

sciences.   

In particular, it will be seen that hypothesis-driven research can never 

result in theory.  This is something that is consistently missed by researchers in 

the social sciences.  We will here see that theory can never be obtained as the 

result of hypothesis-driven research, which to date is essentially all research in the 

social sciences and, hence, the inability for any theory development.   

For background that may be necessary for an understanding of this 

research, please go to the following links:   

What is ATIS?:  What is an “Axiomatic Formal Empirical Theory”? / What is 

a “Theory Model”?  / What is an “Intentional System”?   

Hypothesis-Based Research Methodologies:  

Theories of Learning:  Current Theories of Learning—A Review of the 

http://educology.indiana.edu/Thompson/What%20is%20ATIS.pdf
http://educology.indiana.edu/Thompson/Hypothesis-Based%20Research%20Methodologies.pdf
http://educology.indiana.edu/Thompson/Theories%20of%20Learning.pdf


Literature  

Theory Construction in the Social Sciences:  A Challenge to Learning 

Theorists / Levels of Theory Construction  

 Axiomatic Logics for ATIS:   The Argument for a Symbolic Logic / Intentional 

and Complex Systems / Axiomatic Temporal Implication Logic / Symbolic Logic / 

The ATIS Sentential Calculus / Modes Ponens / Modus Talens / Axiomatic Sentential 

Calculus / List of Logical Schemas / Significance of SCTs (System Construction 

Theorems) / Logical Schemas / The ATIS Predicate Calculus / Theory Building / Class 

Calculus / Relation Calculus / ATIS Calculus / ATIS Options Set Defined / Definitions 

of Logical Operations in Proofs  

A note needs to be made concerning the definition of ‘theory’ in the social 

sciences.   

The definition of ‘theory’ in the social sciences has actually been well-

defined in much the same way that is intended in this report.  For example, 

Donald A. Shutt, Jr., Professor at the University of Wisconsin, in an online pdf 

file, http://www.ssc.wisc.edu/~jpiliavi/357/theory.white.pdf, states that ‘theory’ is 

defined as follows:   

I. What is a theory?  

A. [A theory is a] logically interrelated set of propositions about empirical reality.  

These propositions are comprised of:  

1. Definitions:  Sentences introducing terms that refer to the basic concepts 

of the theory 

2. Functional relationships:  Sentences that relate the basic concepts to each 

other.  Within these we have 

a. Assumptions or axioms 

b. Deductions or hypotheses 

3. Operational definitions:  Sentences that relate some theoretical statement 

to a set of possible observations 

 

B. Why should we care? What do theories do? 

1. Help us classify things: entities, processes, and causal relationships 

2. Help us understand how and why already observed regularities occur 

3. Help us predict as yet unobserved relationships 

4. Guide research in useful directions 

5. Serve as a basis for action. "There is nothing so practical as a good 

theory." 

From the Office of Behavioral and Social Sciences Research, New 

England Research Institutes, an online company, https://www.neriscience.com/, 

we also have ‘theory’ in the social sciences defined as:   

A theory is a set of interrelated concepts, definitions, and propositions that 

http://educology.indiana.edu/Thompson/Theory%20Construction%20in%20the%20Social%20Sciences.pdf
http://educology.indiana.edu/Thompson/Axiomatic%20Logics%20for%20ATIS.pdf
http://www.ssc.wisc.edu/~jpiliavi/357/theory.white.pdf
https://www.neriscience.com/


explain or predict events or situations by specifying relations among variables.   

Whereas in this report there may be some variations in terminology, the 

above definitions essentially state what ‘theory’ is whether in the social sciences 

or the physical sciences.  And, as essentially stated above concerning what 

theories do for us, in this report it will be seen what the purpose of a theory is:     

The purpose of a theory is to provide the means to develop 

mathematical, analytical, or descriptive models that predict counterintuitive, 

non-obvious, unseen, or difficult-to-obtain outcomes.   

Whereas in the social sciences, the “mathematical” development of a 

theory is normally restricted to statistical measures, in this report we focus on a 

theory being axiomatic.  The notion of theory has not changed, just the type of 

mathematics used to define the theory.  In all fields it is contended that a theory 

should be “analytical”, although the type of analysis may be different.  In the 

social sciences, descriptive models are the norm when applying a theory to 

empirical observations.  In this report, we argue for more logico-mathematical 

applications.   

After developing the type of theory to be utilized, it is then seen that the 

purpose is to be able to “predict counterintuitive, non-obvious, unseen, or 

difficult-to-obtain outcomes.”  The point here is simply that if an outcome is 

already known or easily discernable, then there is no need for the theory.  A 

theory may be able to be developed, but for what purpose if the outcome is 

already known?  If you already know that a student will not learn mathematics if 

the student is not taught mathematics, then what is the purpose of designing a 

theory that predicts just such an outcome?   



Hypothesis-Based vs. Axiom-Based Research Methodologies 
The “Hypothesis” and “Axiom” Distinction  

Social scientists rely on hypothesis-based research and attempt to use that 

methodology to develop social theories.  To understand the fallacy of such an 

approach, the distinction between hypothesis and axiom must be understood.   

In the social sciences, axioms and hypotheses are frequently considered to 

have the same meaning.  However, in theory development, these two terms are 

distinctly different.   

In fact, the distinctions between axiom and hypothesis provide strong 

confirmation why there has been no comprehensive theory developed for the 

social sciences, and why hypothesis-driven research cannot provide a basis for 

any such theory development.   

Essentially, the distinction is that a hypothesis is a conjecture about an 

observation or a perceived empirical event that is stated as a conclusion of fact 

that is to be validated by experimental testing.  An axiom, on the other hand, is a 

statement that relates properties of a theory, or the components (objects) of a 

theory to its properties.  An axiom is theory-based; a hypothesis is empirical-

based.   

When a hypothesis is stated, there is no intent that it is meant to develop 

theory—it is meant to be validated as an assertion of fact.  Social scientists then 

attempt, after-the-fact to utilize the results of the testing of the hypothesis to 

somehow develop theory.  However, since the validation of the hypothesis is 

nothing more than that, there is nothing by which the hypothesis can be related to 

other properties or hypotheses that could result in theory development.   

Very simply, hypotheses are not designed to develop theory.   

 

The Writing of a Hypothesis as Opposed to an Axiom 

Consider the following statement:   

HYPOTHESIS:  Student choice and independence are the primary motivators for 

learning. 

As stated, this is a hypothesis.  It is stated as a conclusion of fact that is to 

be validated.  If it is validated, it provides no relevant relation to any other 

statements that might be part of a theory and there are no leading assertions from 



which additional theory statements can be derived.  This is so even if the 

statement is framed as an implication as follows:   

HYPOTHESIS:  If student choice and independence are related to learning, then 

establishing student choice and independence in the classroom will confirm them 

as the primary motivators for learning.   

Now consider the following statement:  

AXIOM:  Students are independent systems (where independent system is a property 

defined by a systems theory). 

This statement is an axiom as it relates the components of a theory, 

students, to a property of the theory, independent system.  It is not a conclusion of 

fact, as there is nothing to validate, but a theoretical construct, an axiom for a 

theory, that informs us about a theory property by which students are identified—

that is, it is assumed that students are independent systems.  Further, this statement 

is neither “true” nor “false”—it is simply an assertion that is assumed to be valid.  

Further, there is no amount of testing that can ever confirm the validity of this 

assertion since there is nothing to validate.  Whether or not this axiom is valid is 

not the issue, since it is assumed that it is.  The issue is whether or not the 

theorems (or logically-derived, theory-based hypotheses) that are deductively 

obtained from it and other axioms of the theory are validated.  Validation of 

theorems (logically-derived, theory-based hypotheses) derived from this axiom 

provides the on-going “preponderance of evidence” that the axiom is a warranted 

valid assertion within the theory.   

An additional point needs to be made about this axiom.  It may be 

contended, as is often done in the social sciences, that if it is found that there is a 

student who is not an “independent system,” then the axiom is demonstrated to be 

“false” and the entire theory must be discarded.  To the contrary, such an 

approach is applicable to hypotheses but not to axioms.  If an empirical example 

is found that refutes a hypothesis, then the research is complete and the hypothesis 

is rejected.  However, an axiom is a basic assumption, not a hypothesis.  If a 

student is found not to be an “independent system,” as independence is defined 

within the theory, then that student simply is not considered with respect to the 

theory—the criteria for the basic assumption has not been met.  A comparable 

example from geometry would be where an artist considers parallel lines to meet 

at “infinity” whereas in Euclidean geometry they do not.  Very simply, the one 

geometry does not refute the other; they are simply two different geometries.  If a 

student is not an “independent system,” then that student is not part of the class of 

students that are being analyzed with respect to the theory that contains the above 

axiom.  When it is asserted that there is nothing to validate with respect to the 



axiom that is exactly what is meant—the axiom is assumed to be valid and all 

analyses proceed upon that assumption.  If the empirical evidence demonstrates 

that a particular event does not meet the criteria for the axiom, then all that means 

is that that event is not analyzed with respect to the theory being considered.  This 

should be a welcome outcome for all educologists who believe that students 

should be treated “individually”—they in fact are members of distinct systems 

that require distinct theories!  [Such distinct theories are provided for by the 

Options Set of ATIS.]   

Now, if as a result of the definition of independent system along with other 

system properties and axioms it is determined that “individual choice and 

independence are motivators for learning,” then it is as a result of some theory 

derivation, and not an a priori assertion of fact.  Then, through various empirical 

analyses it can be determined whether or not in fact “choice and independence” 

are the “primary motivators for learning.”  However, even the validation of this 

conclusion, should it actually be derived, will depend on all of the assumptions 

and qualifications it took to arrive at this conclusion.  Tests are not set up at the 

discretion and “creativity” of a researcher, but are determined by the parameters 

of the theory.   

When designing tests for hypotheses, the burden is on the researcher to 

determine if all parameters have been accounted for; hence, the frequent 

occurrences where two evaluations of the “same” hypothesis results in different 

outcomes.  With an axiomatic theory that results in the derivation of a theorem, it 

is the axioms and theorems that dictate the parameters of the experiment.  Have 

all assumptions of the theory been accounted for in the design of the experiment?    

The distinction between axiom and hypothesis is seen to be quite profound 

for theory development, and it is important to keep clear their differences.   

 

Examples of Hypotheses in the Social Sciences and  

Converting Them to Axioms 
 

Cognitive Load Theory 

To see the distinction between hypotheses and axioms and how the latter 

may lead to theory, consider the following hypothesis taken from the social 

sciences as propounded by Tracey Clarke, Paul Ayres, and John Sweller (Clarke, 

2005):   

 

HYPOTHESIS:  Students with a low-level knowledge of spreadsheets learn 

mathematics more effectively if the relevant spreadsheet skills are learned prior to 



attempting the mathematical tasks.   

The results of testing supported this hypothesis.  For our purposes the 

greater concern is how this hypothesis was developed and whether it may lead to 

theory development.  The rationale for the hypothesis is stated by the researchers 

as follows:   

According to cognitive load theory, instruction needs to be 

designed in a manner that facilitates the acquisition of knowledge in long-

term memory while reducing unnecessary demands on working memory.  

When technology is used to deliver instruction, the sequence in which 

students learn to use the technology and learn the relevant subject matter 

may have cognitive load implications, and should interact with their prior 

knowledge levels.  An experiment, using spreadsheets to assist student 

learning of mathematics, indicated that for students with little knowledge 

of spreadsheets, sequential instruction on spreadsheets followed by 

mathematics instruction was superior to a concurrent presentation.  These 

results are explained in terms of cognitive load theory.  (p. 15) 

The process by which this hypothesis was developed is a retroductive 

process; that is, cognitive load theory was used as a model to develop assertions 

about learning mathematics.  However, there is confusion concerning this process 

since it is claimed:  “These results are explained in terms of cognitive load 

theory” (see last sentence from above quotation).   

If in fact the results “are explained in terms of cognitive load theory,” and 

Cognitive Load Theory (CLT) is in fact a theory, then this hypothesis is a theorem 

of CLT and should be deductively obtained from that theory as a theorem to be 

validated; or, possibly, it is an interpretation of CLT and was derived as an 

abductive process—that is CLT was used as a model of mathematics learning and 

the content of the desired hypothesis was substituted for the content of CLT.    

As we will see later when considering the distinction between 

retroduction and abduction, retroduction is a process of “moving 

backward”, whereas abduction is a process of “taking from”.   

However, it is not claimed that either approach was used, so the question 

moves to whether or not CLT is actually a theory, or is it a hypothesis that has 

been validated through various tests?  If it is a theory, then we may be able to 

determine in what sense it is claimed that CLT “explains” the hypothesis.   

First, the use of the term theory in the context of CLT indicates that it is 

not either a formal theory or an axiomatic theory.  If it is a theory, then it appears 

to be a descriptive theory.  But, even as a descriptive theory, it appears to be very 

limited in scope and functions more like a hypothesis since deductive derivations 



are difficult to obtain.  But, let us look at this more carefully.   

Cognitive Load Theory, developed by J. Sweller, is founded on the 

following four principles:   

 Working memory, or short-term memory, has a maximum capacity 

identified as maximum cognitive load 

 Information that exceeds maximum cognitive load is lost  

 Learning requires that cognitive load remain below some value that 

is less than maximum cognitive load 

 Long-term memory is consciously processed through working 

memory  

NOTE:  The “theory” and “axioms” presented below are for the sole 

purpose of demonstrating a possible construction of an axiomatic theory and in no 

way is to be construed as a replacement for the Cognitive Load Theory developed 

by J. Sweller.  In fact, it is only as a result of the careful development of CLT that 

it is possible to derive an axiomatic theory therefrom.  In general, it is very 

difficult to ascertain axioms from a descriptive theory, since they frequently are 

so vaguely worded that explicit statements of their assumptions are difficult or 

impossible to determine.  Fortunately, CLT is not such a theory.   

Provided below is a preliminary development for a Theory of Memory and 

Learning that is retroductively-derived from CLT.  Briefly presented are the 

primitive terms, initial axioms, definitions and a few theorems of the theory.   

 

Theory of Memory and Learning 
 

PRIMITIVE TERMS:  Cognition, memory, working memory, consciously, cognitive 

load, mental structures, patterns, and languages   

AXIOM 1:  Working memory is that memory which is used to consciously 

process information.   

AXIOM 2:  Working memory has a maximum capacity identified as maximum 

cognitive load.   

AXIOM 3:  Working memory that is maintained below maximum cognitive load 

results in short-term memory acquisition.   

AXIOM 4:  Long-term memory is consciously processed through working 

memory.   

AXIOM 5:  Cognition is determined by a sequence of recognizable patterns or 

languages.   



AXIOM 6:  Long-term memory is short-term memory that is processed and 

related to an existing or newly developed cognitive schema, or structure.   

DEFINITION 1:  ‘Cognitive schemas’ are memory constructs that map short-term 

memory cognition onto devised mental structures that interpret immediate cognition.   

DEFINITION 2:  ‘Learning’ is defined as that processed cognitive load that results in 

the acquisition of short-term memory.   

 

As a result of these axioms and definitions, we obtain the following 

theorems:   

THEOREM 1:  Information that exceeds maximum cognitive load is not cognizable.   

PROOF OF THEOREM 1:   

 Working memory has a maximum capacity identified as maximum cognitive 

load.  (Axiom 2.)   

 That which exceeds maximum capacity is not cognizable.  (Definition of 

‘maximum’.)   

Another way of stating Theorem 1 is:   

THEOREM 1:  Information that exceeds maximum cognitive load is lost.   

This statement of the theorem is the second statement of the four 

principles cited above for CLT.    

THEOREM 2:  For learning to occur, cognitive load must remain below maximum 

cognitive load.   

PROOF OF THEOREM 2:   

 Cognitive load that exceeds maximum cognitive load is not cognizable and, 

therefore, not processed.  (Theorem 1.) 

 Working memory that is maintained below maximum cognitive load results in 

short-term memory acquisition.  (Axiom 2.)   

 Short-term memory acquisition results in learning.  (Definition of ‘learning’.)   

Now the problem is to determine if the hypothesis relating to learning 

mathematics considered previously can be derived from this theory.   

Stating the hypothesis again:   



HYPOTHESIS / THEOREM 3:  Students with a low-level knowledge of spreadsheets 

learn mathematics more effectively if the relevant spreadsheet skills are learned prior to 

attempting the mathematical tasks.   

PROOF OF THEOREM 3:   

 Students do not have cognitive schemas relating to spreadsheets.  (Assumption 

of Theorem 3.)   

 Students do not have cognitive schemas relating to mathematics.  (Assumption 

of Theorem 3.)   

 Lack of cognitive schemas precludes long-term memory.  (Axiom 6.)   

 Spreadsheet cognition precedes mathematics cognition.  (By Axiom 5 and 

assumption of Theorem 3, the spreadsheet structure provides the basic 

“language” by which mathematics is learned.)   

 A spreadsheet cognitive schema must be developed for long-term memory to 

take place.  (Axiom 6.)   

 Therefore, relevant spreadsheet skills must be learned prior to the learning of 

mathematical tasks.  (Conclusion of Theorem 3.) 

 

The importance of this axiomatic development is that now a much 

stronger claim can be made concerning Theorem 3.  Whereas the initial 

researchers could only claim:  “These results are explained in terms of cognitive 

load theory,” it can now be claimed more strongly:  “These results are deductively 

obtained from the “Theory of Memory and Learning” and are validated by 

empirical testing.”   

But what is the far-reaching effect of this second approach?  By validating 

Theorem 3 the researchers have not only validated their “hypothesis” (theorem) 

but have now provided support for the theory.  This validation has now initiated a 

process that, hopefully, will eventually provide a “preponderance of evidence” 

that the theory consistently provides valid outcomes.  By framing CLT as an 

axiomatic theory, every validation of a theorem (or logically-derived, theory-

based hypothesis if you want) validates not only the theorem but the theory.  

Eventually, we will be able to obtain theorems deductively from the theory and 

proceed with confidence that the outcome is accurate, with or without further 

validation.  This is very important, since otherwise every hypothesis must be 

continually validated in every new setting, in every new school, in every new 

learning environment.   



Whereas the hypothesis has been validated for this one group of students 

learning mathematics from a spreadsheet, what can we say if instead of a 

spreadsheet, new computer software is utilized?  Will they have to learn the 

software before learning the mathematics?  At first glance, the answer should be 

“obvious” even without any testing.  But, for the sake of making a point, the point 

is also “obvious”—we have already provided the proof that they would have to 

learn the software and we do not have to, once again, conduct testing to validate 

the theorem.   

But now, what about results that are not so obvious?   

 

Theory of Memory and Learning—Applications 

Theorem 3 provided content that is not stated in the theory axioms.  

Applications of this theory are the result of the logical process of abduction; that 

is, the theory content is determined independent of the theory and substituted for 

the theoretical constructs.  For example, “working memory” of the theory is 

replaced by “spreadsheet” and “mathematics” by the specific application.  

Additional theory applications can be obtained by interpreting various cognitive 

schemas.   

For a non-obvious theory outcome, consider the following schemas that 

have been established as part of long-term memory:   

(1) Learned behavior described as the schema “assertive”; and  

(2) Learned behavior described as the schema “attention-to-detail.”   

When students learn to keyboard it is frequently asserted that in order to 

improve speed and accuracy they must practice keyboarding.  However, if that 

were accurate, then anyone who has been keyboarding for many years should be 

doing so at approximately 60 words-per-minute with great accuracy—whereas 

this is not the case.  There must be more to developing speed and accuracy than 

practicing keyboarding.  Here it is noted that empirical observation refuted the 

prevailing hypothesis.  The alternative was then not derived from the empirical 

observation, but from recognition that the Theory of Memory and Learning should 

apply to this empirical event—a retroductive process.  From the Theory of 

Memory and Learning it is determined that these students have developed certain 

cognitive schemas defined as assertive and attention-to-detail that are 

independent of content.   

As a result of these cognitive schemas and the process of abduction by 

which theory content is determined, the following theorem is obtained:   



 

THEOREM 4:  Keyboarding speed can be improved by any off-task activity that 

increases one’s assertiveness; and keyboarding accuracy can be improved by any off-task 

activity that increases one’s attention-to-detail.   

Theorem 4 is a direct result of Axiom 6 and Axiom 5.  Theorem 4 is a 

non-obvious result of the Theory of Memory and Learning that was derived from 

Cognitive Load Theory.  While there is anecdotal evidence that Theorem 4 is 

valid, actual validation or refutation of Theorem 4 is left to those who are more 

skilled at constructing appropriate tests.  Whether Theorem 4 is found to be valid 

or not, the efficacy of an axiomatic theory has been demonstrated as being one 

that results in non-obvious conclusions.  And, as seen here, an axiomatic theory 

does not have to be formal, although the formalization of this theory may result in 

conclusions that are even more unexpected.   

The practical implications for instruction are quite far-reaching.  If a 

student is having difficulty learning a subject or skill, the student can be helped in 

such learning, not by simply repeating the subject or skill over-and-over, but by 

diverting the student’s attention to a comparable subject or skill that is of more 

interest to the student.  We have probably all seen the movie Karate Kid in which 

the student is told to wash and wax a car with certain motions, of course, whether 

he liked it or not.  But then, when he went back to learn his blocking and fighting 

skills, the same motions were implemented, making him a much better karate 

practitioner.  Sometimes, this may have been called “transfer of learning”, but in 

fact it is much more profound.  It is developing desired skills by learning skills 

that are not obviously relevant.  Or, when learning mathematics, students may not 

actually see the importance of such learning and just refuse to learn.  A practical 

application may be to send the students out with a certain amount of money, real 

or fake, and told to buy as many things as possible with that money.  The student 

who returns with the most “things” wins!  Obviously, more creative 

“applications” can be developed by a creative teacher.  The point is simply that 

we often use this “transfer-of-learning” technique without realizing just how 

powerful such learning is.  Now CLT has shown that it is extremely powerful and 

should be a more relevant part of the instructional process.   

The next step would be to make the theory more comprehensive.  Several 

theories may be related to CLT such as the Information Processing Theory by 

Miller, G. (Miller, 1956), Human Memory Theory by Baddeley, A. D., Cognitive 

Principles of Multimedia Learning by Moreno, R. and Mayer, R. E. (Moreno, 

1999), Parallel Instruction Theory by Min, R. (Min, 1992), Anchored Instruction 

by Bransford, J. D. (Bransford, 1990), and Social Development Theory by 

Wertsch, J. V. (Wertsch, 1985), among others.  All of the relevant theories could 

be brought under one theory that provides the first principles from which all 



others are derived.  Then, all validations further not only the specific research but 

provide greater confidence in the theory that is founded on the first principles.  

Such unification would provide a basis by which the unexpected may actually be 

determined rather than describing that which is already recognized.    

Once again, we have a challenge for Learning Theorists—devise the 

umbrella theory under which all of the above cited theories can be brought by 

providing the first principles, basic assumptions upon which all theories rely.   

 

Instruction Theory 

Another example for converting a descriptive theory to an axiomatic 

theory comes from Merrill, M. D. (2002, pp. 43-59).   

Merrill presents five hypotheses that he refers to as first principles of 

learning and asserts a premise that these principles “are necessary for effective 

and efficient instruction” (2002, p. 44).  Further:   

If this premise is true, there will be a decrement in learning and 

performance when a given instructional program or practice violates or 

fails to implement one or more of these first principles.   

He continues:   

These five first principles stated in their most concise form are as follows:   

1. Learning is promoted when learners are engaged in solving real-world 

problems.   

2. Learning is promoted when existing knowledge is activated as a 

foundation for new knowledge.   

3. Learning is promoted when new knowledge is demonstrated to the 

learner.   

4. Learning is promoted when new knowledge is applied by the learner.   

5. Learning is promoted when new knowledge is integrated into the 

learner’s world.   

These first principles are already well-stated as axioms with but minor 

modifications.  In fact, he also has already provided corollaries for these 

hypotheses.  The conversion to axioms is accomplished as follows:   

 



1. If students are engaged in solving real-world problems, then student 

learning will increase.   

2. If a student uses existing knowledge when learning new knowledge, then 

student learning will increase.   

3. If new knowledge is demonstrated for the student, then student learning 

will increase.   

4. If a student applies new knowledge, then student learning will increase.   

5. If a student integrates new knowledge with existing student knowledge, 

then student learning will increase.   

Whereas these first principles are easily converted to the form of axioms, 

these axioms do not provide a basis for a theory.  The reason is that they all have 

the same conclusion, thus not providing any means to relate the axioms.  What 

this then tells us is that these axioms are actually prescriptions for learning that 

have been derived from a more robust theory—a learning theory.  The 

antecedents of the implications provide the prescriptions for learning as follows:   

 Solve real-world problems 

 Use existing knowledge 

 Demonstrate new knowledge 

 Apply new knowledge 

 Integrate new knowledge with existing knowledge 

As stated, however, these prescriptions for learning but describe events or 

empirical observations that can be tested, rather than the foundation for a theory.  

Rather than an Instruction Theory, we have an Instruction Prescription that may 

be of great value to teachers.   

If these prescriptions are to be derived from theory, then some or all of 

these antecedents would have to be the conclusions of other axioms.  In fact, these 

axioms would probably be theorems within the more robust theory.  This then 

reverts back to the challenge presented earlier:   

Is there a Learning Theorist who can develop the basic 

principles, the first principles in fact, that will encompass not only 

the other learning hypotheses cited, but now these principles that 

seem to have strong support for being valid guidelines that will 

improve students’ learning?    



Now we can return to our earlier questions.   

 

What is a ‘Theory Model’?   

‘Theory model’ will be explicated below in the section on Theory 

Development.   

 

What is an ‘Intentional System’? 

What is meant by ‘Intentional’? 

‘Intentional’ is used here to describe a person or group of people who 

have specific goals which their actions are designed to achieve.   

For example, an education system has specific goals, the education of 

students, that it is designed to achieve.   

A military system has specific goals, the protection of a society, that it is 

designed to achieve.   

A person has specific work-goals that he/she “intend” to achieve.   

These are all examples of a person or group of people who are intentional; 

that is, they are “goal-oriented”.   

 

What is a ‘System’? 

‘System’ is the connection of objects; for example, people, that are 

considered to be functioning as a unit.   

Each of the above three examples are systems—an education system, a 

military system, and an individual person system.   

Formally, ‘System’, S, is defined as the following ordered-pair:   

S =df (SO,SR), where SO is the object-set and SR is the relation-set.   

“=df” is read:  “is defined as”.   

However, this definition of ‘system’ will be refined later in this study.   



We also now see that there are additional terms that have been added that 

we will have to understand if we are to proceed in a clear manner that avoids 

confusion; for example, ‘functioning’ and ‘unit’.  However, such an endeavor will 

result in an unending sequence of terms or will result in a circularity of our 

definitions.   

As a result, it will be necessary to start with certain undefined terms that it 

must be presumed all readers of this study will comprehend.  And, it must also be 

presumed that all readers of this study will have a certain basic background in 

order to fully comprehend this study.   

What Basic Background is Required to Understand this Study? 

It is presumed that all readers will be able to follow the development of 

the basic logic that is used; e.g., the Sentential Calculus and Predicate Calculus, 

among others.   

There are numerous textbooks on these subjects where the basic 

knowledge can be acquired, although, to a certain extent, a development of the 

logics will also be included in this study so that all readers will be informed of 

what is required.   

It is not presumed that a reader has a knowledge of axiomatic theories, 

since that is one goal of this study—to discuss the nature of and value of 

axiomatic theories, to provide the rationale for axiomatic theories and why they 

are necessary for any definitive empirical study where individual-predictive 

behavior is desired.  While today, practically all studies in the social sciences, if 

not all, rely on statistical-based analyses, and such analyses are only, and can only 

be, group-predictive.  If individually-predictive outcomes are desired, then an 

axiomatic-based analysis must be utilized.   

Further, it is presumed that any serious reader will obtain and read the 

seminal work by Steiner, E. (1988):  Methodology of Theory Building.   

Also, the work on APT developed by Frick, T. (1990a), “Analysis of 

Patterns in Time (APT)”, will be required as it provides part of the logical basis 

for ATIS:   

What Undefined Terms are Required? 

The required undefined terms will be presented as necessary during this 

study.  For now, we start with the following undefined terms:   

‘Intentional’, ‘Object’ (which may also be referred to as ‘Element’), and ‘Empirical’. 



Therefore, what is ATIS? 

As previously stated:  

ATIS is an axiomatic formal empirical theory 

designed specifically for intentional systems. 

ATIS is an empirical theory that is designed so that selected parameters can 

be evaluated to determine projected outcomes in view of these parameters.   

It should be noted that ATIS does not apply only to education systems, but 

to any intentional system.  As noted previously, there are many intentional 

systems, some of which are:  education systems, military systems, terrorist 

network systems, corporate systems, and individual person systems.  It is just that 

in this research, we will restrict our concern to education or learning systems.  A 

distinction between education systems and learning systems is that we will 

consider education systems to be the more formalized institutional systems 

formed as school systems run by a government or private enterprise.  Whereas a 

learning system can be any individual learning program normally structured by an 

individual for limited goals.    

Applications of ATIS 

One of the main features of ATIS is that it can be used as the basic logic for 

computer simulations; for example, SimEd, SimTIE, as designed and developed 

by Theodore W. Frick, Associate Professor and Web Designer, Indiana 

University, and other such programs.  One program, in particular, that will utilize 

ATIS is SimTIE (Simulated Totally-Integrated Education).  Thus, SimTIE will 

have an axiomatic empirical theory for its logic which will provide empirical-

based predictive outcomes.  That is the advantage of utilizing ATIS as the basic 

logic.  The theory on which SimTIE is founded has been developed by Frick, T. 

(Frick, 2016).    

The outcomes of computer simulations, or computer models, are 

dependent on the program designed to analyze the selected input parameters.  

There are essentially two types of programs that can be used for computer 

models—Scenario-Based and Logic-Based.   Most often, and especially for the 

“Sim” models, a Scenario-Based Model is used.  Such models are dependent on 

the imagination of the designer and comprehensiveness of the data included in the 

program.   



Scenario-Based Models 

Scenario-Based Models are defined as programs that provide scripts to 

determine outcomes.  The scripts can be narrative or quantitative.   

Narrative scripts characterize the qualitative parameters of a system; 

that is, the social, philosophical, and individual parameters and their 

uncertainty of future outcomes.  That is, the predictiveness of the model 

is pre-determined by the programmer.   

Quantitative scripts define the scientific facts, known or credible data, 

and quantitative models that are used to determine future outcomes.  

Again, the predictiveness of the model is pre-determined by the 

programmer in terms of what scientific facts are included in the model.   

However, regardless of the type of script, their content is closed; that is, 

there are a limited number of possible outcomes, and the scripts predetermine the 

outcomes.  Friedman, T. (April 1999) recognizes this closed characteristic of 

Scenario-Based Models in his report on SimCity, “Semiotics of SimCity,” when 

he states:   

Of course, however much "freedom" computer game designers grant 

players, any simulation will be rooted in a set of baseline assumptions.  

SimCity has been criticized from both the left and right for its economic 

model.  It assumes that low taxes will encourage growth while high taxes 

will hasten recessions.  It discourages nuclear power, while rewarding 

investment in mass transit.  And most fundamentally, it rests on the 

empiricist, technophilic fantasy that the complex dynamics of city 

development can be abstracted, quantified, simulated, and 

micromanaged.   

 

Logic-Based Models  

On the other hand, Logic-Based Models are not dependent on analyses of 

predetermined values, but on the logic of a theory that has been shown to be valid 

for the target empirical system; for example, an education system.  The theory 

describes the empirical system in terms of its affect relations, properties, and 

axioms.  The theory logic is then used to project outcomes founded on the theory 

with respect to input parameters.  The value of the Logic-Based Model is then 

determined by the skill of the designer to provide an appropriate and accurate 

program that corresponds to the input.  Designed properly, a Logic-Based Model 

should be able to provide projected outcomes that are open-ended.    



Unlike Scenario-Based Models that are closed due to the limited number 

of scripts, Logic-Based Models have an infinite number of outcomes.   

This is especially so with the logic designed for the ATIS Model.  Due to 

the number of axioms involved, over 200 with more being added, there are 

initially tens-of-thousands of theorems that can be obtained.  However, the SCTs 

(Structural Construction Theorems) provide for an open-ended and essentially an 

infinite number of additional theorems.  The reason is that new affect relations, 

properties, or system-descriptive parameters can be inserted into the SCTs that 

will automatically generate thousands of additional theorems.  The Logic-Based 

Model is not dependent on what has been initially programmed for the logic, but 

what is subsequently programmed as a result of new system parameters.   

The strength of a Logic-Based Model will be seen in what follows, and 

additional analyses relating to the two types of models will be discussed.   

 

Theory Development 

Elizabeth Steiner has explicated the concepts of ‘theory’ and ‘model’ in 

great detail.  She has also explicated the relation between ‘theory’ and ‘model’.  

We will start with her analyses (1988).  For a more historical development of her 

work, see the following upon which her 1988 work is founded:  (Maccia & 

Maccia, 1966), (Maccia, 1965), Maccia, 1964a), (Maccia, 1964b), (Maccia, 

1962a), (Maccia, 1962b), and (Maccia & Maccia, 1962c).   

It is commonly believed that developing theory is derived from one of two 

logical processes—induction or deduction.  Theory development, however, is not 

derived from either.   

Induction brings together many observations from which it is claimed a 

generalization, or pattern, can be obtained.  Such, however, is not the case.   

It is clear that in order to obtain the pattern, the observer must be able to 

recognize the pattern, and therefore has brought the generalization to the data.  

The data does not induce the generalization, the observer does.   

This is a mode of inquiry, but it is not theorizing.  Today induction 

provides the basis for the data-mining technologies that are widely used to 

develop structure from unstructured data.  The structuring of unstructured data is 

not theorizing.  Induction is a means of evaluating data so as to recognize and 

develop patterns.  The patterns, when logically organized, are the theory that the 



data confirms by induction.   

Deduction is a means of explicating existing theory; that is, “to clarify and 

complete theory” (Maccia, 1962b).  The theory presents the postulates or axioms 

upon which the theory is based.  Deduction then provides the logical process by 

which the theory is made explicit through its deductive statements.  Deduction 

generates conclusions of the theory in the form of theorems or hypotheses that are 

to be evaluated for validity.   

Deduction explicates a theory into statements, and induction evaluates the 

statements.   

What then is the logical process by which theory is developed?  

Retroduction.   

 

Retroduction 

 ‘Retroduction’ is a “moving backward.”  From one perspective we move 

backward to devise another perspective.   

For example, the “Holographic Paradigm” may provide a perspective for 

education.  Considering that a holograph can be generated from any of its facets, 

it may suggest that a student may learn, not by focusing on the subject of concern 

directly, but by developing coordinated skills in a discipline not normally 

considered as being directly relevant.  But, the “parts” of the divergent discipline 

may have “facets” that in fact produce the entire “hologram” in the subject of 

concern.  For example, one may learn how to interpret historical events by taking 

acting lessons whereby the skill is developed that allows one to become immersed 

in a period thinking and lifestyle.   

In terms of theory development, one theory that can be used as a model for 

developing another theory is a “devising theory.”   

Retroduction is the process of using one theory as a model to devise 

another theory.  Therefore:   

(1) Retroduction devises theory,  

(2) Deduction explicates theory, and  

(3) Induction evaluates theory.   

 



‘Retroduction’ and ‘Abduction’ Confusion 

There is a prevailing misconception concerning ‘retroduction’ and 

‘abduction’.   

Retroduction is normally, if not universally, defined as abduction.  Such a 

definition is in error.  First, there is a recognizable distinction between a “taking 

from,” abduction, and a “moving backward,” retroduction.   

It is presumed that Peirce generally defines ‘abduction’ and ‘retroduction’ 

as the same, although a careful reading indicates that he does not.  An analysis of 

this confusion is worth considering due to its almost universal acceptance.   

The ‘retroduction’ and ‘abduction’ confusion seems to have come from 

the work edited by Hartshorne, C. and Weiss, P., Collected Papers of Charles 

Sanders Peirce, (Hartshorne & Weiss, 1960).  For example, if one goes to the 

index for Volume 1, the reference for ‘retroduction’ is:  “see Abduction.”  The 

implication is that they are the same.  But, when we look at the first reference for 

‘abduction’, §65, we find that the two are not the same at all.  Peirce writes:   

§10.  KINDS OF REASONING 

65.  There are in science three fundamentally different kinds of 

reasoning, Deduction (called by Aristotle ή or ή), Induction 

(Aristotle’s and Plato’s έή) and Retroduction (Aristotle’s άή), but 

misunderstood because of corrupt text, and as misunderstood usually translated 

abduction.  Besides these three, Analogy (Aristotle’s ) combines 

the characters of Induction and Retroduction.   

It should be clear that ‘retroduction’ and ‘abduction’ are not the same, and 

that they have been equated only because of “corrupted text.”   

So, what is the distinction between ‘retroduction’ and ‘abduction’?  

Consider the following examples.   

A direct affect relation and its measure in a behavioral 

topological space are defined in terms of a mathematical vector.  That is, 

it is recognized that the concept of “vector” is applicable to this 

behavioral theory.  This transition was recognized as a result of affect 

relations being interpreted as “force fields.”   

Gravitational and electromagnetic force fields are vector fields; 

fluid velocity vectors, whether in the ocean or the atmosphere, are vector 

fields; and weather pressure gradients are vector fields.  Affect relations 

within a behavioral system are vector fields—they are dynamic.  They 

exhibit both direction and magnitude.  They exhibit the change and flow 

of any other empirical vector field.   



This process of applying an interpretation to the mathematical construct 

“vector,” is a logical process of abduction.  This is not a process of “moving 

backward,” but a process of “taking from.”  The mathematical measure is simply 

being applied to the content of a behavioral theory.   

There is no theory development; there is simply an interpretation of the 

theory by mathematical means.  The mathematical concept of a vector field is 

utilized as a measure to further explicate the theory.  The affect relation concept 

was already in the theory, so it is clear that no theory development was 

accomplished.  Was there a retroduction of the “form” as a single predicate from 

mathematics?  No.  What is being utilized here is simply the definition of a vector 

field.  The definition of “vector field” is being “taken from” mathematics in order 

to deductively explicate the theory of affect relations.  As Thompson remarked 

following the classification of the SIGGS properties by Frick:  “It was recognized 

that the Structural Properties represented the topology of the theory.”  Such 

recognition was a deductive process and not a retroductive process.  The 

mathematical vector field theory was not used to devise the SIGGS theory; it was 

used to explicate the SIGGS theory.  (SIGGS is an acronym for:  Set theory, 

Information theory, Graph theory, and General Systems Theory.)   

This study defines ‘retroduction’ and ‘abduction’ as distinct logical 

processes, and such that they complement the logical process of ‘deduction,’ as 

follows:   

 Deduction is the logical process by which a conclusion is 

obtained as the implication of assumptions.  That is deduction 

explicates theory.   

 Retroduction is the logical process by which a point of view is 

utilized to devise a conjecture or theory.  That is, retroduction devises 

theory.   

 Abduction is the logical process by which a theoretical construct 

of one theory is utilized to analyze or interpret the parameters of 

another theory.  That is, abduction interprets theory.   

 Induction is the logical process by which the conclusions of a 

theory; that is, the theorems or hypotheses, are empirically evaluated 

for validity.   That is, induction evaluates theory.    

These distinctions are formalized below.  While the proofs of the 

following theorems are beyond what is required to understand ATIS, they are 

provided since they introduce concepts that may be of value to some researchers; 

e.g., various logical concepts, as well as new concepts like isostruct and 



isosubstantive.  

While the Deduction Theorem is a standard part of mathematic logic, this 

study extends this analysis to include the Retroduction Theorem and Abduction 

Theorem.  The proof of the Deduction Theorem can be found in many mathematic 

texts on advanced mathematical logic.   

 

Deduction Theorem   
The Deduction Theorem will be stated first.  The applicable logical 

schema of the Sentential Calculus is:   

If P Q, then P ⊢Q; and If P ⊢Q, then P Q .... P ⊢Q .. ⊢P Q 

Where “” is read “implies”, “⊢” is read “yields”, and “” is read “if and only 

if” and means an equivalence.  The periods, “.”, before and after the equivalences 

indicate the grouping priorities.  If parentheses are used, the above statement would be 

shown as follows:   

If P Q, then P ⊢Q; and If P ⊢Q, then (P Q  (P ⊢Q  ⊢P Q)) 

The Deduction Theorem is a statement of the following implication:    

P ⊢Q .. ⊢P Q  

The statement of the Retroduction Theorem and Abduction Theorem are much 

more complex.   

 

Retroduction Theorem   
We will first take a look at the concept of Retroduction as defined by Steiner:   

Given theories A and B, theory A is a devising model for theory 

B if there is a subset, C, of A such that the predicates of B are a 

representation in substance or form of the predicates of C; whatever is 

true of C is true of B; and not whatever is true of B is true of A.     

Initially it would appear that the following implication holds:  A  B.  

However, as Steiner points out, “The theory or conjecture that emerges 

(conclusion) contains more than the theory or point of view from which it 

emerges (premises).  The implication, then, can only hold from the conclusion to 

the premise”; that is, B  A.    It could be argued that the sentential and predicate 

logic do not hold in this instance.  But, if not, we are left with a state of confusion 



when we are attempting to develop a scientific theory that relies on just such 

logics.  Therefore, it must be assumed that the logic holds and we need to take a 

closer look at just what is required.   

Taking retroduction, as it is conceptually defined; we have that Theory A 

is a devising model for Theory B.  By this is meant that the predicates for Theory 

B are derived as representations from a subset, C, of the predicates of Theory A; 

that is, P(ĥ)B  P(h)CA.   

This implication is read:  If P(ĥ) is a predicate of B, then P(h) is a 

predicate of C, which is a subset of A; where the predicates P(ĥ) are derived from 

the predicates P(h).   

But also we have that Theory B results in more than what was in Theory 

A; since, otherwise, it would not be an emendation of Theory A, but simply a 

replication.  This emendation of Theory A ; i.e., Theory B, that results in more 

than what is in A is formally defined as:   

P(ĥ)B[P(h)A[~(P(ĥ)B ≟ P(h)A]; 

where ‘’ is read “there exists”, ‘~’ is read “not” or “it is not the case that”, ‘∀’ 

is read “for all”, and ‘≟’ is read “is isostruct to”; and isostructism is a mapping 

of one entity to another to which it is isomorphic or isosubstantive.  (That is, 

“There exists a Predicate ĥ, an element of B, such that, it is not the case that the 

Predicate ĥ is an element of B is isostruct to Predicate h an element of A.)  This 

meets the final requirement by Steiner.    

The formal definition is read:  “There exist predicates, P(ĥ), that are elements of 

B, such that, for all predicates, P(h), that are elements of A, it is not the case 

that the predicates, P(ĥ),  that are elements of B, are isostruct to the predicates, 

P(h), that are elements of A.   

Further, it is required that the “predicates of B are a representation in substance 

or form of the predicates of C.”  This requirement is formalized as follows:    

P(h)C ≟ P(ĥ)B =df P(h)C ≅ P(ĥ)B :: P(h)C ≊ P(ĥ)B;  

where, ‘≅’ =df “is isomorphic to” and ‘≊’ =df “is isosubstantive to”.    

Isostruct =df A mapping of one entity to another to which it is isomorphic or 

isosubstantive.   



Isomorphism =df A mapping of one entity into another having the same 

elemental structure, whereby the behaviors of the two entities are identically 

describable by their affect relations.   

Isosubstantive =df  A mapping of one entity into another having similar predicate 

descriptors.   

Therefore, all of Steiner’s stipulations have been met.   

As a result, the Retroduction Theorem is formalized as follows:   

P(ĥ)B[P(h)A[~(P(ĥ)B ≟ P(h)A],  

P(h)C  A ≟ P(ĥ)B,  

P(ĥ)B[~(P(ĥ)B ≟ P(h)A)] ⊢ P(ĥ)B  P(h)C  A. 

 

Proof of Retroduction Theorem  

For the purposes of this proof, since the conclusion is simply the result of 

the assumptions by definition, all that needs to be argued is that the Predicate 

Calculus applies to theory B.  To apply, theories A and B must be isostruct with 

respect to C.  By assumption, they are.   All we have to show is that P(ĥ)B 

represents a consistent set of predicates that have been derived from Theory A 

and that they make B a theory. The formal proof is:   

P(h)A      Assumption 

P(ĥ)B  P(h)C  A    Assumption 

P(ĥ)B P(h)A[~(P(ĥ)  P(h))]  Assumption 

P(ĥ)B are derived from P(h)C  A  Assumption 

All we now need to demonstrate is that P(ĥ)B is a consistent theory.   

If {(ŵ,ŷ)B✕B | P(ŵ,ŷ)} ≅ {(w,y)A✕A | P(w,y)}, then all of the 

consistent logical conclusions relating to P(w,y) also apply to P(ŵ,ŷ), by 

substitution.    

If P(ĥ) ≊ P(h), then any component of A that satisfies P(h) has a 

corresponding component in B that satisfies P(ĥ).     

Therefore, the components, relations, and predicates which are valid for 

Theory A have corresponding components, relations, and predicates in B, 

resulting in the consistency of B.  By definition, the predicates of B comprise a 



theory.    

Since the theories are isostruct, any proof in C is applicable to a 

corresponding proof in B, since they will have corresponding axioms and 

assumptions.  Further, any predicate in B not in A can be taken as an assumption 

or axiom from which resulting theorems can be derived by the Sentential and 

Predicate Calculi.    

The value of this theorem is that it establishes that the logic of the 

Axiomatic Sentential and Predicate Calculi apply to theory B.    

As has been shown above, there is a distinction between retroduction and 

abduction.  The Abduction Theorem is given below.   

 

Abduction Theorem.  Given theories A and B, theory A is a formal model-

of theory B  if there is a subset, C, of A such that the predicates of B are an 

equivalent representation in form of the predicates of C; whatever is true of C is 

true of B; and whatever is true of B is true of C.   

The formal statement of the Abduction Theorem is:       

h  ĥ, P(h) ≊ P(ĥ), P(h) ≊ P(ĥ) ⊢ P(h)C  A :≡: P(ĥ)G  B 

 

Proof of Abduction Theorem:   

(1) h  ĥ              Assumption 

(2) P(h) ≊ P(ĥ)            Assumption  

(3) P(h1), P(h2), …, P(hn)C  A          Assumption  

(4) P(ĥ1), P(ĥ2), …, P(ĥn)G  B            Substitution, 1 in 3 

(5)  ∴ P(h1), P(h2), …, P(hn)C ⊢ P(ĥ1), P(ĥ2), …, P(ĥn)G     From 3 and 4 

(6) ⊢ P(h1), P(h2), …, P(hn)C  P(ĥ1), P(ĥ2), …, P(ĥn)G        
Deduction Theorem on 5 

(7) ∴ P(ĥ1), P(ĥ2), …, P(ĥn)B ⊢ P(h1), P(h2), …, P(hn)C  A     From 4 and 3 

(8) ⊢ P(ĥ1), P(ĥ2), …, P(ĥn)B  P(h1), P(h2), …, P(hn)C  A             
Deduction Theorem on 7 

(9) P(h) ≊ P(ĥ) ⊢ P(h1), …, P(hn)C  A :≡: P(ĥ1), …, P(ĥn)B               

Definition, 4 & 7 / Q.E.D. 

 



The significance of this theorem is that formal predicates of a given theory 

that are isomorphic to formal predicates of another theory, define the properties of 

the second theory.   

 

Types of Models 

Steiner presents the concept of ‘model’ as a dichotomy:  ‘model-of’ and 

‘model-for’.   

Intuitively, ‘model-of’ corresponds to the familiar type of construction 

models—model cars, model planes, etc.  Also, intuitively, ‘model-for’ 

corresponds to the familiar type of exemplary models—professional models who 

exemplify appearances or role models who exemplify behaviors.   

From these examples, it is seen that a ‘model-of’ is a representation of an 

object, possibly a “scale model”; and a ‘model-for’ is the object that is being 

represented in an ideal; for example, a “super model.”   

Model-of is a scaled version of the intended object.   

Model-for is a paradigm that can be used to describe ideal structures.   

These models are designated, respectively, first-order model and second-

order model.   

Models that are used to devise theory by retroduction are second-order 

models.  They provide the perspective desired to develop the new theory.  Thus 

Steiner defines the relation between the types of logic and the types of models as 

follows:   

Retroductive Logic =df Devising of theory from a second-order model.   

Deductive Logic =df Explicating a theory for clarification or completeness.   

Inductive Logic =df Evaluating a theory to delineate the range of defined objects.   

A theory may be further delineated by the referents of the theory.  If the 

theory is about actually existing objects, then it will be called an ‘empirical 

theory’.  For example, theorizing about social referents is an attempt to 

characterize actually existing objects falling within the domain of some social 

context or process.  Education theorizing is such a theory; it is empirical 

theorizing.  In an empirical theory, the statements not only express the nature of 

the objects, but also the way in which the objects are interrelated.   



In view of the preceding, in this study, ATIS is a model-for education 

theorizing.  SimEd or SimTIE, on the other hand, are models-of education systems.   

Now that the type of theorizing has been established, the ATIS model will 

be further explicated.  ATIS is a logico-mathematical model; that is, it is a formal 

model with logical and mathematical formalizations.    

 

ATIS as a Mathematical Model Theory  

In mathematics, model theory is defined as a branch of logic that studies 

mathematical structure, and, in particular, the structures of axiomatic set theory.  

ATIS is a generalization of mathematical model theory.    

Axiomatic set theory is set theory founded on axioms with no empirical 

content.  As set theory is closely associated with mathematical logic, there is an 

integration of the Sentential and Predicate Calculi in ATIS that results in a formal 

theory that provides the rigor of deduction and proof.    

While the properties and axioms of ATIS are initially framed in the context 

of an empirical theory, those properties and axioms are transformed into a formal 

logico-mathematical theory that allows for the analysis of ATIS as a formal theory.   

 

Mesarović’s General Systems Theory Mathematical Model   

Others have developed mathematical models for general systems theory.  

One in particular, Mihajlo D. Mesarović, has developed this area extensively.   

Mesarović, M. D., (1972, p. 251) has developed measures for system 

properties.  In his work, Mesarović (1972, p. 264) restricts the measures to 

“General Systems Theory of Hierarchical Systems.”  The mathematical measures 

developed by Thompson in this study are a generalization of the Mesarović 

measures as extended by Lin, Y. (1999).   

However, Mesarović also introduces a “coordination strategy” that will 

not be applied to ATIS measures.  This strategy was designed by Mesarović to 

“adjust” the theoretical projections with actual observations.  As described, it 

appears to simply classify two sets of systems, those that can be “adjusted” and 

those that cannot.  Such a dichotomy is not appropriate for the type of systems 

here being considered.  For ATIS, the criteria for verification are with respect to the 



theorems of the theory without adjustment.     

The distinction between the Mesarović approach and that proposed here is 

that Mesarović relies on models that are “scientifically” developed yet closed, 

whereas the approach here is founded on the logic of system’s theory; such logic 

resulting in an open-ended theory that provides for an infinite number of 

outcomes.   

As described earlier, the proposed model for this research can be tailored 

to the specific needs of an empirical system without having to modify the initial 

program, as would have to be done in a Scenario-Based Model.   

While Mesarović has contributed greatly to the mathematical development 

of general systems theory, his system models do not have a basis founded on 

theory.  One such model is WIM (World Integrated Model) that was developed 

with 49 subroutines.  It was quite refined in that it utilized about 21,000 numbers 

to describe the state of the global system at any one time.  An overview of WIM 

can be viewed online at http://genie.cwru.edu/scenarioanalysis.htm.  That 

overview is provided here:   

World Integrated Model (WIM) 

DOS/ Windows & Mac versions, coded in FORTRAN and consists of 49 

subroutines. 

WIM began in 1972 as a joint project between Mihajlo Mesarović and 

Eduard Pestel.  WIM is a model which utilizes 21,000 numbers to 

describe the state of the global system at any given point in time. The 

world is divided into 12 regions and represents integrated global 

variables such as population, energy, natural resources, trade, etc.  

GLOBESIGHT has superseded WIM.  WIM was originally funded by 

the Volkswagen Foundation. 

Contact: Peter Brecke, School of International Affairs,  

Georgia Institute of Technology, Atlanta, GA 30318-0610 

Email: peter.brecke@inta.gatech.edu  

Areas included in model: 

Economics, Environment, Energy, Population, Natural Resources 

The direction being taken by the study herein presented is distinct from 

that of most, if not all, other social models—this SimEd Model will rely on a 

Logic-Based Model for its projections.  It is believed that the parameters are too 

numerous and the possible outcomes are so extensive that anything less would 

result in a model that could end up with the same shortcomings as that recognized 

by Friedman concerning SimCity.   

With this introduction to ATIS, it is seen that in order to have a legitimate 

empirical model that can result in empirically-verifiable results, the model must 

http://genie.cwru.edu/scenarioanalysis.htm
mailto:peter.brecke@inta.gatech.edu


be founded on a Logic-Based Model, and that ATIS, being an axiomatic theory, 

provides just such a basis.    

We will now take a more in-depth look at the development of ATIS and its 

value for empirical studies of intentional systems.   

 

‘Theory’ and ‘General System’ Definitions 

The definitions of theory and General System must be considered in more 

detail, and how they can address the needs of those industries concerned with 

predicting system outcomes founded on various structural scenarios desired by an 

organization or as the result of empirical observations.   

Since the systems of concern are characterized by vast amounts of 

information, we can come to an understanding of such systems by seeing what is 

being done in industries that have dealt with large amounts of information.  One 

such industry that must interpret vast amounts of data is the counter-terrorist 

industry.  This industry previously utilized the Total Information Awareness (TIA) 

System, but it was discontinued due to privacy concerns.  However, since it 

utilized data-mining technologies, it would have been limited in its ability to 

actually provide individually-predictive outcomes.   

A report concerning the TIA System, however, does highlight the direction 

being pursued in this industry to respond to the terrorist threat, and provides key 

points that should be considered when attempting to find a means by which the 

terrorist threat can be identified.   

 



In a report by the Defense Advanced Research Projects Agency’s 

Information Awareness Office, it states:   

“It is difficult to counter the threat that terrorists pose.  Currently, 

terrorists are able to move freely throughout the world, to hide when necessary, 

to find unpunished sponsorship and support, to operate in small, independent 

cells, and to strike infrequently, exploiting weapons of mass effects and media 

response to influence governments.  This low-intensity/low-density form of 

warfare has an information signature, albeit not one that our intelligence 

infrastructure and other government agencies are optimized to detect.  In all 

cases, terrorists have left detectable clues that are generally found after an 

attack.  Even if we could find these clues faster and more easily, our counter-

terrorism defenses are spread throughout many different agencies and 

organizations at the national, state, and local level.  To fight terrorism, we need 

to create a new intelligence infrastructure to allow these agencies to share 

information and collaborate effectively, and new information technology aimed 

at exposing terrorists and their activities and support systems.  This is a 

tremendously difficult problem, because terrorists understand how vulnerable 

they are and seek to hide their specific plans and capabilities. The key to 

fighting terrorism is information.  Elements of the solution include gathering 

a much broader array of data than we do currently, discovering information 

from elements of the data, creating models of hypotheses, and analyzing these 

models in a collaborative environment to determine the most probable 

current or future scenario.  DARPA has sponsored research in some of these 

technology areas, but additional research and development is warranted to 

accelerate, integrate, broaden, and automate current approaches.”  (Emphasis 

added.)    

This reference can be found at the following link for DARPA Information 

Office:   

http://spot.pcc.edu/~rwolf/DARPA/darpahome.htm  

Therefore, what is needed is a means of identifying the “clues” prior to an attack.  

The solutions are recognized, but the technology required to address these 

solutions has not been developed.  As seen, they are still relying on “analyzing 

models in a collaborative environment”.  However, analyzing such models can 

never be predictive, they will always be reactive since the information has to be 

first obtained and then analyzed.  What is needed is a real-time analysis of 

incoming data that is predictive.  What is needed is a “new information 

technology aimed at exposing terrorists and their activities and support systems.”  

As reported herein, ATIS is just such a technology.    

It is also noted that similar concerns are confronted in our pursuit of a reliable 

http://spot.pcc.edu/~rwolf/DARPA/darpahome.htm


education system where it is desirable to be able to discern outcomes of changes 

in education methodologies in a timely manner rather than having to wait 12 or 

more years before results can be recognized.   

In response to the terrorist threat, the technologies being sought are 

characterized as follows:   

 Real time learning, pattern-matching and anomalous pattern detection 

 Human network analysis and behavior model building engines 

 Event prediction and capability development model building engines  

 Data mining of unstructured data  

 Information discovery through statistical methods  

As noted, these same concerns can be applied to education systems.   

The following charts depict the efforts that the TIA was trying to address, 

and can be found at the following website:   

(http://en.wikipedia.org/wiki/Information_Awareness_Office#Components_of_T

IA_projects_that_continue_to_be_developed)   

 

See Diagram 1 below of the Utah Data Center and a description of its 

purpose.   
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 Diagram 1:  Diagram of Utah Data Center and Description of Its Purpose. 

 

 

 

 

 

 

 



 

Diagram 2:  Diagram of Total Information Awareness System, taken from 

official (decommissioned) Information Awareness Office website 

 

What this chart does show is the vast amount of information that must be 

integrated and analyzed in order to determine predictive outcomes.   

The information required for an education system is shown on the 

following page.   

The diagram has also been expanded for ease of reading.   

http://upload.wikimedia.org/wikipedia/en/6/6b/Total_Information_Awareness_--_system_diagram.gif


 

Diagram 3:  Diagram of Education Total Information Awareness System 

 

 

 

 

 

 

 

 



 

For an in-depth analysis of an education system, please refer to the 

following link:  Theory Development in Education:  Implementing the ATIS 

Options Set.   

http://educology.indiana.edu/Thompson/Theory%20Development%20in%20Education,%20Implementing%20the%20ATIS-Option%20Set.pdf
http://educology.indiana.edu/Thompson/Theory%20Development%20in%20Education,%20Implementing%20the%20ATIS-Option%20Set.pdf


However, the difficulty with all of the approaches cited above, the 

technologies being sought, is that they rely on statistical-based analyses.  The 

same can be said for any industry today where predictive technologies are being 

considered; and especially in education.  What is actually wanted, however, is the 

ability to detect discrete indicators, not group indicators that are provided by 

statistical-based analyses.  That is, “In all cases, terrorists have left detectable 

clues that are generally found after an attack.”  These are discrete indicators 

that can never be identified by the use of group indicators.   

For example, in education, we can frequently recognize problems after the 

fact and can recognize “indicators” that should have pointed us in the right 

direction.  For example, on-going modifications of a school system or a class are 

done in response to “feedback” that the current plan needs modification.  Those 

indicators are discrete and in order to optimize instruction, they must be found 

prior to the compromising of instruction.  Statistical-based analyses, by design, 

cannot detect such indicators, since they only “detect” that which has already 

happened and only with respect to the group and not the individual.   

When considering how to predict system optimization, we must first 

understand the nature of the problem and what solutions are even feasible for 

solving the problem.  We will start with the following premise:   

Group-Predictive Premise 

Statistical analyses are, by design, only group-

predictive, and can—by design—never be 

individually predictive; that is, they can never 

identify discrete indicators.   

It is important to state this premise since essentially every approach now 

being taken in education, business, the military, etc. is founded on a statistical-

based analysis.  Hypotheses are verified by statistical studies.  This is especially 

the case with respect to unstructured data.  Data-mining is a critical tool for 

developing patterns of business or educational behavior.  However, such analyses 

cannot provide discrete predictions.  Further, in all such analyses, patterns must 

be determined and that can only be done after the activity is well developed.   

An axiomatic theory; however, can provide analyses with respect to 

discrete indicators and is required for predicting individual outcomes.   

We will start by taking another look at the definition of General System 

and how it should be defined in order to analyze intentional systems.   

 



Definition of General System 

From a review of the literature, it is clear that there are various definitions 

of system as well as general system.  Some of the definitions are required due to 

mathematical concerns.  Others are very imprecise and are used for descriptive 

arguments rather than logical or mathematical precision.  The definition used here 

follows the convention in mathematics of a system, S, being an ordered pair 

consisting of an object-set, S, and a relation set, R; that is:     

S = (S,R). 

This definition can be brought into the context of education or terrorist 

network systems by citing the definition provided by Steiner and Maccia as 

follows:   

System, S, =df A group with at least one affect relation that has information (Maccia, E.S. 

& Maccia, G.S., 1966, p. 44). 

S =df (S,R) = (Sx,S); where S = Sx and R = S.   

A system is an ordered pair defined by an object-set, Sx, and a relation-

set, S.      

It is noted that with the development of ATIS, the requirement that the affect-

relation “has information” has been dropped due to theoretical concerns.   

In this study, a more extended definition of system is required to more 

fully define General System.  This extension is also required to more clearly 

define the topology and/or relatedness of a system by its object-sets and relation-

sets; as well as allow for a more rigorous and comprehensive development of the 

system logic required for a logical analysis.   

 A General System is defined within a Universe of Discourse, U, that 

includes the system and its environment.  The only thing that demarcates the 

systems under consideration is the “Universe of Discourse.”  And, while that 

universe may be somewhat fuzzy, whatever systems are being considered will be 

well defined.  In the case of Education Systems the boundary of the universe may 

be quite fluid, or possibly unknown, especially with respect to the object-sets.   

U is partitioned into two disjoint systems, S and S’.  Therefore, Universe 

of Discourse has the following property:   

U = S ⋃ S’; such that, S ⋂ S’ = ∅.   



The disjoint systems of U, S and S’, are defined as system and negasystem, 

respectively.   

System environment and negasystem environment are defined as follows:   

System environment, S’, =df The components of the universe not in the 

system.   

Negasystem environment, S, =df The components of the universe not in 

the negasystem.   

A General System, G, is frequently defined by the following parameters:   

 Family of Affect Relations Set, A;  

 Object Partitioning Set, P ;  

 Transition Function Set, T ;  

 Linearly Ordered Time Set, ; and  

 System State-Transition Function, .   

That is:    General system, G, =df A set of affect relations, partitioned components, 

transition functions, time set and a system state-transition function.    

G =df (A, P, T, , );  

 

However, although, this definition of General System provides a fairly 

comprehensive view of what is required to properly analyze the functioning of a 

system, in order to address the concerns of the desired intentional systems this 

definition needs to be extended.  First, the above cited parameters are defined as 

follows:   

Affect Relation Set:  A, the Affect-Relation Set, corresponds to the previously stated 

relation-set, S.  Intuitively, this is the set that contains all of the “relations” between 

elements of U.  This is a “set of sets.”  However, in this case, the sets are defined by 

specific Affect Relations.  For example, these sets will be defined for an education 

system as follows:  “Teacher-Student Instructional Relation”; “Student-Textbook 

Relation”; “Student-Parent Relation”; “Administrator-Business Community Relation”; 

etc.  As can be seen, this set can become quite large with numerous subsets, the various 

relations of an education system.  This is where the concern of “system refinement” must 

be considered; that is, when selecting relations that are to be considered for the education 

system, the Least-Refined Definition Principle must be employed.   

 

Least-Refined Definition Principle:  Any system can be viewed with greater 



refinement, but the level of refinement must be minimized to obtain the greatest 

predictive results—a view that is possibly counter-intuitive.   

Possibly the easiest way to visualize this is to remember that you do not 

want to let the minute details get in the way of being able to see what is going on.  

If we were cognizant of everything around us, we would not be able to function 

properly due to all the noise.   

Object Partitioning Set:  P, the Object Partitioning Set, corresponds to the 

previously stated object-set, Sx.  Intuitively, this is the set that contains all of the 

“things” within an education system or terrorist network system or other large 

system and its negasystem:  students, teachers, administrators, learning 

materials, community resources, etc.; or terrorists, financial resources, 

supporters, etc.  What is special about this set, however, is that it is a “set of sets”; 

its elements are subsets of Sx.  And, any one object of the system can be in only 

one subset, hence the name “Partitioning.”  For example, even if a “student” at 

times fills an instructional capacity, the individual can only be placed in one set—

either the individual is a “student” or a “teacher,” but not both at any one time.   
 

 

Transition Function Set:  T, the Transition Function Set, is necessary in order to 

“move” objects about the Universe, U.  The elements of this set are the functions 

defined by feedin, feedstore, input-feedintra, storeput-feedintra, feedout, 

feedthrough, feedenviron, and feedback.  Without them, nothing moves.  Also this 

provides for the dynamics of the system whereby individuals, as above, can be 

placed in the “student set” at one time and the “teacher set” at another time.   
 

 

Linearly Ordered Time Set:  , the Linearly Ordered Time Set, is required in 

order to give the intentional systems a dynamic property.  This set helps to keep 

the system organized!  Intuitively, this set may be the easiest one to apply to the 

education system.  That is, essentially it allows you to attach to an event the 

appropriate “time” that the event occurs.  Without this set there would be no order 

or sequence to the events of the system.  Also, this is necessary for any 

application of APT Values (Scores) [Analysis of Patterns in Time Values (Frick, 

T., 1990].   
 

 

System State-Transition Function:  , the System State-Transition Function, is 

required in order to alter the “state” of an education system.  Whereas T, the 

Transition Function Set, moves objects about the system,  changes the state of 

the system as a result of the new Affect-Relations defined by the move or new 



affect-relations introduced into the system.  Both T and  produce a change in the 

system, but each is required in order to define the changed system.   

Now that each parameter has been defined and described, let’s take 

another look at the definition of General System:   

G = df (A, P, T, , ) 

Here we do need a refinement of the definition to provide greater 

relatedness of these parameters.  That is, an additional parameter must be 

introduced.  The definition is changed as follows:    

G = df (A, P, Q, T, , ) 

In this definition, another parameter has been added—Q  (qualifiers, normally for 

component-qualifiers).    With this modification, we now have the following 

definition:   

General System Defined:   

General System =df a set of affect-relations (A) which determine a set of 

partitioned components (P) defined by component-qualifiers (Q), a 

transition functions set (T ), a linearly-ordered time set (), and a state-

transition function (σ).    

This definition is formalized as follows:   

G =df [A ⊩ (P (Q, T, , ))]; where 

‘⊩’ is read “determines” or “which determines” or “from which is/are 

derived”, as appropriate for the sentence in which it is used.  This symbol 

is similar in intent to the logical “yields”, but whereas “yields” is a 

logical relation for a deductive proof, this is a predicate relation 

identifying that which is derived from the existent set.     

That is, a system is first recognized by the affect-relations and not the 

components of the system, as is commonly assumed.  From the affect-relations, 

the partitioned components are obtained.  Then the component-qualifiers are 

determined; that is, the properties of the system that determine what components 

are to be considered members of the system.  Then the relatedness of the 

components through the transition functions is determined, a time assigned, and 

the state-transition is determined.   

Now, let’s take a look at the elements of each of these sets.   

The sets that define G have the following elements:   



A1, A2, …, An  A;  

Tp, Ip, Fp, Op, Sp, Lp, SBX, S’BY  P ; that is, 
toput, input, fromput, output, storeput, spillput, system logistic qualifier, 

negasystem logistic qualifier, system background components, and negasystem 

background components.   

L, L ’  Q ; that is, L are the system qualifiers, and L ’ are the 

negasystem qualifiers.   

I, O, T, B, E, S  T; that is, feedin, feedout, feedthrough, feedback, 

feedintra, and feedstore.   

t1, t2, …, tk  .   

Let the object-set of a General System, GO, be such that GO = SX ⋃ S’Y; 

where SX and S’Y are the object-sets of S and S’, respectively.  Then, GO is defined 

by the following:   

GO = df SX ⋃ S’Y = (Ip ⋃ Fp ⋃ Sp ⋃ L  ⋃ SBX) ⋃ (Tp ⋃ Op ⋃ Lp ⋃ L ’ ⋃ S’BY).   

Further, as all of these sets are disjoint, the following holds:   

Ip ⋂ Fp ⋂ Sp ⋂ L  ⋂ SBX ⋂ Tp ⋂ Op ⋂ Lp ⋂ L ’ ⋂ S’BY =  ∅.   

 



Diagram 4:  Diagram of System Properties 



Diagram 5:  Diagram of System Properties, Gray Scale 

 



Summary 

In this report we have discussed theories and models, and how ATIS is 

developed as an axiomatic formal empirical theory designed specifically for 

intentional systems.   

Theories of learning were discussed and why it is that they do not and 

cannot provide a comprehensive and consistent theory, and why hypothesis-based 

development cannot result in a theory of learning.   

We discussed the distinction between scenario-based and logic-based 

models and why a logic-based model is required if actual predictive outcomes are 

desired when studying education systems or other types of intentional systems.   

We also discussed how an empirical theory must be developed and why a 

logico-mathematical theory is required in order to gain a real understanding in the 

social sciences.   

A definition of general system was presented and was given an initial 

formal development.   
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