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Preface 

There is a long history in the social sciences of researchers attempting to develop a consistent and 

comprehensive theory of education, theory of learning, theory of behavior, and other theories of concern to 

social scientists but to no avail.  And, even with this failure, they persist with the following lament:   

In spite of their use of the scientific approach and accumulation of a large quantity of reliable 

knowledge, education and the other social sciences have not attained the scientific status typical of the natural 

sciences.  The social sciences have not been able to establish generalizations equivalent to the theories of the 

natural sciences in scope of explanatory power or in capability to yield precise predictions.1   

What they fail to recognize is the reason for this lack of theory development.  It would seem that 

with over 100 years of failure, one would begin to look for the reasons that the achievements of the physical 

sciences have not been attained in the social sciences.   

What we will herein determine is that first, the “scientific approach” is not even used by physical 

scientists, regardless of their claims to the contrary, and second, an “accumulation of a large quantity of 

reliable knowledge” does not result in theory.   

What we will do is present an empirical theory for intentional systems that is applicable to all of the 

social sciences, and that the theory must be developed as an axiomatic theory.   

In order to get the most out of this report, certain background is necessary.  This report is presented 

both in a descriptive manner as well as mathematical.  But for either approach, there is one work that should 

be read before proceeding too far with this report.  That work is the seminal work prepared and published by 

Elizabeth Steiner on theory construction:  Methodology of Theory Building.2   The research provided therein 

is critical reading for any serious reader of this study.   

Further, a background or at least a basic knowledge of logic and mathematical logic, in particular, is 

necessary to understand some of the more technical work in this report.   

That said, this report should be of value to anyone interested in the social sciences and, in particular, 

one who is attempting to develop a theory within the social sciences.   

A note needs to be made concerning the definition of ‘theory’ in the social sciences.   

The definition of ‘theory’ in the social sciences has actually been well-defined in much the same 

way that is intended in this report.  For example, Shutt, Professor at the University of Wisconsin, states that 

‘theory’ is defined as follows:   

 

                                                 
1 Ary, D., Jacobs, L.C., and Razavieh, A., (1985), Introduction to Research in Education, Holt, Rinehart and Winston, New York, 

p. 19.      
2 Steiner, Elizabeth, (1988), Methodology of Theory Building, Indiana University, Educology Research Associates, Sydney.   
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I. What is a theory?  

A. [A theory is a] logically interrelated set of propositions about empirical reality.  These propositions are comprised 

of:  

1. Definitions:  Sentences introducing terms that refer to the basic concepts of the theory 

2. Functional relationships:  Sentences that relate the basic concepts to each other.  Within these we have 

a. Assumptions or axioms 

b. Deductions or hypotheses 

3. Operational definitions:  Sentences that relate some theoretical statement to a set of possible observations 

 

B. Why should we care? What do theories do? 

1. Help us classify things: entities, processes, and causal relationships 

2. Help us understand how and why already observed regularities occur 

3. Help us predict as yet unobserved relationships 

4. Guide research in useful directions 

5. Serve as a basis for action. "There is nothing so practical as a good theory." 

http://www.ssc.wisc.edu/~jpiliavi/357/theory.white.pdf  

Also, we have:  ‘theory’ in the social sciences has been defined as:   

A theory is a set of interrelated concepts, definitions, and propositions that explain or predict events or 

situations by specifying relations among variables.  (Office of Behavioral and Social Sciences Research, New England Research 

Institutes, esource@neriscience.com.) 

Whereas in this report there may be some variations in terminology, the above definitions essentially 

state what ‘theory’ is whether in the social sciences or the physical sciences.  And, as essentially stated 

above concerning what theories do for us, in this report it will be seen what the purpose of a theory is:     

The purpose of a theory is to provide the means to develop mathematical, analytical, or descriptive 

models that predict counterintuitive, non-obvious, unseen, or difficult-to-obtain outcomes.   

Whereas in the social sciences, the “mathematical” development of a theory is normally restricted to 

statistical measures, in this report we focus on a theory being axiomatic.  The notion of theory has not 

changed, just the type of mathematics used to define the theory.  In all fields it is contended that a theory 

should be “analytical”, although the type of analysis may be different.  In the social sciences descriptive 

models are the norm when applying a theory to empirical observations.  In this report, we argue for more 

logico-mathematical applications.   

After developing the type of theory to be utilized, it is then seen that the purpose is to be able to 

“predict counterintuitive, non-obvious, unseen, or difficult-to-obtain outcomes.”  The point here is simply 

that if an outcome is already known or easily discernable, then there is no need for the theory.  A theory 

may be able to be developed, but for what purpose if the outcome is already known?  If you already know 

that a student will not learn mathematics if the student is not taught mathematics, then what is the purpose of 

designing a theory that predicts just such an outcome?   

 

http://www.ssc.wisc.edu/~jpiliavi/357/theory.white.pdf
mailto:esource@neriscience.com
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What is “ATIS”? 

ATIS, Axiomatic Theory of Intentional Systems, is an axiomatic formal empirical theory 

designed specifically for intentional systems.  Therefore, to understand what ATIS is, we must 

understand the following:   

(1) What is an “Axiomatic Formal Empirical Theory”?  

(2) What is a “Theory Model”? 

(3) What is an “Intentional System”?   

As can be seen, there are numerous questions that must be answered if we are to clearly understand 

what it is that ATIS is and how it is applied to help us answer questions relevant to our lives.   

In order to properly develop our understanding, this study will be presented in both a descriptive 

manner and a very technical manner that relies on various mathematical logics and formalisms not generally 

found in studies of this type.  The reason for this reliance on a logico-mathematical development is so that 

there will be no confusion as to what is intended and so that the argument for ATIS can be clearly followed.  

While descriptive theories are of value for initial understanding, they also allow for interpretations that are 

not always consistent, and hence the numerous debates for understanding found in the social sciences.   

A more rigorous and formal approach helps to eliminate confusion.  And, a logico-mathematical 

axiomatic approach reduces that confusion even further.  In this study, we will use a combination of both the 

descriptive and the formal so that we will have not only an intuitive understanding of what is intended by 

way of the descriptive, but also a very precise understanding by way of the formal.   

So, let us revisit our questions stated above.   

 

What is an “Axiomatic Formal Empirical Theory”?  

‘Axiomatic’ is simply a theory that is founded on axioms rather than description.   

‘Formal’ means that logico-mathematical symbolisms are used.   

‘Empirical’ means that our concern is with what is verifiable by observation or experience.   

‘Theory’ will be discussed in detail below 

‘Axiomatic formal empirical theory’ is an empirical theory that is developed using axioms and 

logico-mathematical terminology.   
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What is a “Theory Model”?   

The answer to this question will require an in-depth study of both ‘theory’ and ‘model’.   

There is much more that must be discussed before we can have a clear understanding of just how 

‘theory’ and ‘model’ are being used in that there are many interpretations of each.  To address these issues, 

we will refer to a seminal work prepared and published by Elizabeth Steiner on theory construction:  

Methodology of Theory Building.3   The research provided therein is critical reading for any serious reader 

of this study.  What is presented here will be but a summary of the critical points she presents that are 

directly relevant to the questions of concern here.    

 

What is ‘Theory’?   Steiner states the following:   

‘Theory’ is derived from the Greek ‘theoria’ which means contemplation or speculation.  In a 

popular sense then one’s theory is one’s speculation or conjecture about something.  …  However, 

such a popular sense does not catch up the technical sense of ‘theory’ in ‘Einstein’s theory of 

relativity’, …4 

In this study, we are concerned only with the technical, or formal, sense of ‘theory’.   

Due to the importance of understanding the meaning of a technical or formal theory in the social 

sciences, a fairly extensive discussion is provided below.  This discussion is also provided due to the 

mischaracterizations of ‘theory’ that can be found in the literature of the social sciences, and the wide range 

of interpretations of ‘theory’.   

Due to their great number, we will begin by taking a look at Theories of Learning.   

 

Theories of Learning 

Overview 

Before considering the nature of theory development, we will first take a look at the theories of 

learning found in the literature.  There are a multitude of theories of learning in the social sciences.  And, it 

will be seen from these theories why there has never been, and cannot be, any general theory of learning 

obtained as a result of these methodologies of theory development.   

All of these attempts at theory development are describing “what is” rather than asserting the general 

principles that “result in what is”—hence, the use of hypotheses.  Hypotheses help to answer questions 

about “what is, “but do not provide a means to determine “general principles”.   

                                                 
3 Steiner, Elizabeth, (1988), Methodology of Theory Building, Indiana University, Educology Research Associates, Sydney.   
4 Ibid, p. 4.   
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As will be seen, hypotheses are a means to inductively validate assertions, but validation does not 

provide the means to develop the basic assumptions or general principles upon which comprehensive, 

complete and consistent theories are founded.   

Simply put, hypotheses are not designed to develop theory; they are designed to validate theory.  

But, when the entire research methodology of the social scientist is hypothesis-driven, then there is no 

means by which legitimate theory can be devised since, by use of the hypothesis-methodology, there is no 

intent to devise such a theory.   

 

 

Current Theories of Learning—A Review of the Literature 

As noted above, there are a multitude of theories of learning.  Some of these are listed below.  And 

with each it will be seen that what is attempted is not to establish general principles, but to describe the 

learning process as perceived from a narrow perspective.  For example, consider the following list of 

theories:   

Adult Learning Theory  

Anchored Instruction Theory 

Contiguity Theory  

Constructivist Theory 

Conditions of Learning Theory 

Dual Coding Theory 

Experiential Learning Theory 

Functional Context Theory 

Genetic Epistemology Theory  

Information Pickup Theory 

Information Processing Theory 

Mathematical Learning Theory 

Operant Conditioning Theory 

Repair Theory 

Script Theory 

Sign Learning Theory 

Situated Learning Theory 

Structural Learning Theory 

Subsumption Theory 

Symbol Systems Theory 

Triarchic Theory 

 

Each theory is framed as a hypothesis that can be tested, rather than a presentation of general 

principles that include the observations and produce unknown outcomes.  Each theory treats learning from a 

different perspective and introduces hypotheses to validate that perspective.    For example, consider the 

following learning theories:   
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Adult Learning Theory, as the name suggests, is restricted to considering the characteristics of adult learners.  

Then, the analysis of these learning characteristics is divided into personal characteristics and situational 

characteristics.  However, as will be discussed in this report, such analysis does not lead to theory.  What such 

analyses do is develop the means to interpret what one observes, possibly by the abduction of mathematical models 

from mathematics, or behavioral models from psychology.  Adult Learning Theory is actually Adult Learning Laws 

that can be used to assist one in developing adult learning programs by describing learning events or empirical 

observations.  Adult Learning Theory does not design theory; it simply establishes predetermined guidelines that are 

considered of value for the instruction of adults.   

Anchored Instruction Theory is an instructional methodology that has demonstrated success in helping students to 

learn by utilizing “interactive videodisc technology.”  While it is a paradigm for others to emulate in designing 

problem-focused learning, it is not a theory in that no logically-derived hypotheses are obtained or possible.  

Anchored Instruction Theory does not devise theory; it simply provides a predetermined framework that is considered 

of value for instruction that can be implemented in various learning programs by describing learning events or 

empirical observations.   

Contiguity Theory is framed as a hypothesis:  “A combination of stimuli which has accompanied a movement will on 

its recurrence tend to be followed by that movement.”  This is an assertion that can be validated through testing.  But 

such validation does not devise theory; it simply establishes that under the given conditions a specific “movement” 

will be obtained by describing learning events or empirical observations.   

Constructivist Theory provides guidelines by which it is believed students will learn; for example, “The instructor 

should try ...,” “The instructor and student should engage ...,” etc.  This is but a prescription for learning, and not a 

theory for discovery of learning processes in that the conclusion is already known.  The four major aspects of 

learning provided are prescriptive of what should be done for a student to learn.  These prescriptions do not devise 

theory; they simply guide one to assist in establishing a predetermined learning environment that it is assumed will be 

effective by describing learning events or empirical observations.    

In each of these cases, theory is not being devised; only guidelines that can help one to design a 

more effective learning environment—that is, they describe known learning events or empirical 

observations.  This is the problem with hypothesis-driven methodologies—whereas one may validate that a 

specific learning methodology may be effective, there is nothing that has been validated that can help to 

devise theory that can then be used to predict outcomes even in similar environments.  Every learning 

environment must be re-validated to determine if the hypothesis is valid.    

But, what no one has done is what is critical to the development of a general theory of learning—

devise a theory that encompasses all of these perspectives; devise the basic elements that will bring under it 

all of the hypotheses that have been proposed and validated.  And, the reason that this has not been done lies 

right at the foot of the methodology being used—hypothesis-driven methodologies.  Each researcher starts 

out anew with a new perspective and validates it as a result of a new hypothesis.  This methodology must 

change if there is to ever be a theory of learning founded on general principles that is comprehensive and 

consistent.   
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Now, there is no question that the research provided by these hypotheses has resulted in 

understanding of the learning process and of student development or learning.  It is certainly recognized that 

a vast wealth of information and understanding has been obtained.  The value and results of all of the 

research is not in question.  The concern is that all of this research has been designed for just one thing—to 

amass all of this wealth of information and understanding for its own sake, but not to develop any general 

principles about learning processes and student development that could be confidently applied to diverse 

classes of students.  With great understanding, exceptional learning programs can be developed within a 

specific class of students, but no predictive outcomes can be obtained as to just how valuable the learning 

program is since there is no theory founded on general principles.  The great diversity of the learning 

theories that are available can be seen by those cited above.   

And, there is a further problem that results from identifying the above hypotheses as theories—when 

theory is reduced to include every conjecture, then theory is a term that is of limited to no value.  When 

theory can include the assertions of one whose only purpose is a political or financial agenda, as well as 

those that are carefully and logically-developed descriptive or axiomatic theories, then we as scientists have 

no one to blame but ourselves when the religiously-motivated or financially-motivated, or otherwise 

personally-motivated layman asserts that something is “only a theory,” implying that it is of little or no 

value and the pronouncements of a layman concerning the scientific endeavor are just as important and 

credible as the professional scientist.   

Unfortunately this perspective is furthered when texts on Scientific Research in Education mislead 

one on the nature of just such research.  The following text edited by Richard J. Shavelson and Lisa Towne 

purports to present an overview of educational research and theory development, but falls substantially short 

by not helping to clarify the problems within education research.  Of course, as editors, they were but 

compiling the results of a committee that had been:   

Assembled in the fall of 2000 and was asked to complete its report by the fall of 2001.  The charge from the 

committee’s sponsor, the National Educational Policy and Priorities Board of the U.S. Department of 

Education, was as follows:   

This study will review and synthesize recent literature on the science and practice of scientific 

education research and consider how to support high quality science in a federal education research 

agency.5   

The problem, of course, does not lie with the editors, but with the entire education research 

community.  The problem lies with the very assumptions about the development of education as a science 

and the manner in which “knowledge in education accumulates.”  The focus of research in education, as 

perceived by the committee, was stated as follows:   

• How can research-based knowledge in education accumulate?   

The committee believes that rigor in individual scientific investigations and a strong federal infrastructure for supporting 

such work are required for research in education to generate and nurture a robust knowledge base.  Thus, in addressing 

this question, we focused on mechanisms that support the accumulation of knowledge from science-based education 

research—the organization and synthesis of knowledge generated from multiple investigations.  The committee 

considered the roles of the professional research community, the practitioner communities, and the federal government.  

Since we view the accumulation of scientific knowledge as the ultimate goal of research, this issue weaves throughout 

the report.6  [Emphasis added.]   

                                                 
5 Shavelson, Richard J. and Towne, Lisa, Eds. (2002).  Scientific Research in Education, National Educational Policy and 

Priorities Board of the U.S. Department of Education, p. 22.   
6 Ibid. p. 24.   
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The “goal of research” as the “accumulation of scientific knowledge” clearly states the problem in 

education research today.  As will be discussed below, even Ary, et al., as noted previously, recognize that 

even with the “accumulation of a large quantity of reliable knowledge, education and the other social 

sciences have not attained the scientific status typical of the natural sciences.”7  They, and most others, 

totally miss the point that scientific knowledge as found in the natural sciences is not and cannot be obtained 

by simply accumulating “a large quantity of reliable knowledge.”  Unfortunately, “science” as 

“accumulation of knowledge” determines the basis for the committee’s report as reflected by the title of the 

second chapter—“Accumulation of Scientific Knowledge”—which confirms that they totally misunderstand 

the nature of the scientific endeavor.  The first paragraph of the report states the problem, but also the basis 

for this Committee’s agenda—to refute the obvious.  They assert:   

The charge to the committee reflects the widespread perception that research in education has not produced the 

kind of cumulative knowledge garnered from other scientific endeavors.  Perhaps even more unflattering, a 

related indictment leveled at the education research enterprise is that it does not generate knowledge that can 

inform education practice and policy.  The prevailing view is that findings from education research studies are 

of low quality and are endlessly contested—the result of which is that no consensus emerges about anything.8   

Unfortunately, rather than take this perception at face value, the Committee tries to refute it.  An in-

depth analysis of this Committee’s report might be appropriate except that the Committee itself provides the 

answer that the report is prepared to support an agenda for Federal funding(!) rather than to present an 

unbiased report about the nature of research and the reason for the lack of any real theory development in 

education that would provide a basis for “knowledge accumulation” in education.  In response to the above 

perception of education research, the Committee states:   

Is this assessment accurate?  Is there any evidence that scientific research in education accumulates to provide 

objective, reliable results?  Does knowledge from scientific education research progress as it does in the 

physical, life, or social sciences?  To shed light on these questions, we consider how knowledge accumulates in 

science and provide examples of the state of scientific knowledge in several fields.  In doing so, we make two 

central arguments in this chapter.   

First, research findings in education have progressed over time and provided important insights in policy and 

practice.  We trace the history of three productive lines of inquiry related to education as “existence proofs” to 

support this assertion and to convey the promise for future investments in scientific education research.  What is 

needed is more and better scientific research of this kind on education.   

Our second and related argument is that in research across the scientific disciplines and in education, the path to 

scientific understanding shares several common characteristics.  ...  The path to scientific knowledge wanders 

through contested terrain as researchers, as well as the policy, practice, and citizen communities critically 

examine, interpret, and debate new findings and it requires substantial investments of time and money.9  

[Emphasis added.]   

Unfortunately, again, the Committee now elicits the input of the “citizen community” to “critically 

examine new findings” of the education research community.  We continue to contend with the results of 

just such a position as the “citizen community” bringing to education their own personal agendas disguised 

as “scientific inquiry”; e.g., the Creationists.  When every scientific inquiry is argued in the court of public 

opinion and bias, then education researchers, or at least this Committee, has brought on itself the problems 

of scientific inquiry experienced centuries ago.  It is true that the religiously-motivated public has replaced 

the religious clerics who previously mandated “scientific” outcomes to assure their personal agendas as with 

the findings of Galileo.  What was Galileo’s response?   

                                                 
7 Ary, Donald; Jacobs, Lucy Cheser; and Razavieh, Asghar.  (1985).  Introduction to Research in Education, p. 19.   
8 Op cit., Shavelson, p. 28 
9 Ibid. p. 29.   
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Due to the clear political and financial agenda being pursued by this Committee, little more needs to 

be said.  However, a few points will be made as such will help to clarify just exactly what does have to be 

done in education research.   

To support its position concerning research in education, the Committee tries to rely on the 

development of research in molecular biology.  They assert:   

The earliest model of the gene was derived from Mendel’s pea plant experiments in the 1860s.10   

And the science related to molecular biology and the modern concept of the gene developed from 

there.  The problem with this purported analogy is that the science of molecular biology did in fact build on 

previous discoveries, each building on the developing theory—unlike any corresponding development in 

education.  There is no basic theory of education on which to build.   

In Chapter 3, the Committee states:   

In Chapter 2 we present evidence that scientific research in education accumulates just as it does in the 

physical, life and social sciences.  Consequently, we believe that such research would be worthwhile to pursue 

to build further knowledge about education.11   

Unfortunately, such is just not the case.  First, the Committee seems to believe that education is not 

part of the social sciences.  The social sciences, of course, have the same problems in research as are found 

in education—there is no basic theory on which to build, and both are furthered by hypothesis-driven 

research methodologies that cannot devise theory.   

More important, the Committee seems to have no idea how scientific research “accumulates” in the 

physical sciences.  This will be discussed in more detail below; however, for now it must simply be 

recognized that the physical sciences, and physics, in particular, are furthered as the result of well-defined 

theories.  Education and the social sciences have none.   

While Shavelson and Towne have provided some insight concerning the problems in education 

research today, John W. Creswell (Creswell, 2003) provides additional insight concerning those problems.  

Most of the problems center on a misunderstanding of the nature of theory and the resulting name-calling, 

especially with the degradation of the Post-Positivists.   

The easiest to discern, possibly, is the assertion that those taking an “advocacy/participatory 

approach” are conducting “research” to develop “knowledge.”12  Creswell states:   

This position arose during the 1980s and 1990s from individuals who felt that the postpositivist assumptions 

imposed structural laws and theories that did not fit marginalized individuals or groups or did not adequately 

address issues of social justice.  ...  In the main, these inquirers felt that the constructivist stance did not go far 

enough in advocating for an action agenda to help marginalized peoples.  These researchers believe that inquiry 

needs to be intertwined with politics and a political agenda.  Thus, the research should contain an action agenda 

for reform that may change the lives of the participants, the institutions in which individuals work or live, and 

the researcher’s life.  ...  Therefore, theoretical perspectives may be integrated with the philosophical 

assumptions that construct a picture of the issues being examined, the people to be studied, and the changes that 

are needed.  Some of these theoretical perspectives are listed below.   

                                                 
10 Ibid. p. 31.   
11 Ibid. p. 50.   
12 Creswell, 2003, p. 9.   
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• Feminist perspectives.     • Queer theory.   

• Racialized discourses.     • Critial theory.   

• Disability inquiry.13   

As has been adequately demonstrated by Marx and his ilk, the October Revolution, etc., advocacies 

of such political agendas are not doing science but propaganda and fear-mongering in the guise of “social 

justice.”  By definition of the special interests, this does not define either “research” or “pursuit of 

knowledge,” but simply the attempt to impose one’s personal agenda on others who may or may not wish to 

support the agenda.  Even if there is support for the agenda, such still does not bring it under any “pursuit of 

knowledge” nor “research,” but it remains a personal agenda for the purpose of imposing one’s will on 

another.   

To claim, as in the last sentence of the above quote, that these perspectives are “theoretical 

perspectives” is to intentionally mislead those laymen who do not know better.  These perspectives are 

nothing more or less than personal agendas.  Today, one such perspective is “creationism” strutting itself as 

“science.”  To include these agendas under the guise of science is to do a great disservice to all scientists 

and serious researchers in education.   

As the advocacy/participatory approach apparently grew out of the constructivist stance as one that 

did not go far enough, we can now go back and have a better understanding of the constructivists.  

According to Creswell:   

Assumptions identified in these works [by Lincoln and Guba, Schwandt, Neuman, and Crotty] hold 

that individuals seek understanding of the world in which they live and work.14   

Well, of course they do, but that does not mean that they are creating theory.  It is uncertain whether 

or not this assertion by Creswell is to be taken as something profound.  He continues:   

They develop subjective meanings of their experiences—meanings directed toward certain objects or 

things.  These meanings are varied and multiple, leading the researcher to look for the complexity of views 

rather than narrowing meanings into a few categories or ideas.  The goal of research, then, is to rely as much as 

possible on the participants’ views of the situation being studied.15  [Emphasis added.] 

And, we wonder why there is no theory of education!  When everyone is a “researcher”, then no one 

is.  And to assert that the “goal of research” is to “rely as much as possible on the participants’ views” 

indicates a total lack of understanding of what a researcher does or the process of scientific discovery.   

Of course, normally science is intended to devise a means to mitigate the influence of subjective 

evaluation so as not to prejudice the outcomes.  But, by relying “as much as possible on the participants’ 

views” the outcome of such research is clearly designed to obtain the biased results of the “researcher” and 

to further a personal agenda.  The advocacy/participatory advocates simply make this intent more clear.   

 

                                                 
13 Ibid., pp. 9-10.   
14 Ibid., p. 8.   
15 Ibid., p. 8.   
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Most telling concerning the constructivist approach is the following:   

Rather than starting with a theory (as in post-positivism), inquirers generate or inductively develop a 

theory or pattern of meaning.   

For example, in discussing constructivism, Crotty (1998) identified several assumptions:   

1. Meanings are constructed by human beings as they engage with the world they are interpreting.  Qualitative 

researchers tend to use open-ended questions so that participants can express their views.   

2. Humans engage with their world and make sense of it based on their historical and social perspective ....  They 

also make an interpretation of what they find, an interpretation shaped by the researchers’ own experiences and 

backgrounds.16      

The first question that must be addressed concerning the first point above is:  To what end?  Are 

“researchers” simply providing a venue in which anyone can share their own ignorance?   

And, the response to the second point is:  That is exactly why, in legitimate research, one attempts to 

preclude personal bias.  Of course, the Flat-Earth Advocates do need an outlet, and the constructivists have 

provided one.  But that should not be confused with scientific inquiry, except for the sociologist who wants 

to determine just what it is that makes these people tick.   

As shown in this study, much of the attraction to such advocacies as discussed above rests directly 

with the problem of comprehending just what a theory is and what is the nature of scientific inquiry.  But, it 

also may simply be a result of the personal agendas of the advocates as discussed above.  In those cases, 

reason is not the issue and there can be no legitimate dialog.   

 

Hypothesis-Based Research Methodologies 

Now let us address the current research methodologies in the social sciences.  As seen from the list 

of learning theories presented above, the social sciences, in particular, have relied on hypothesis-driven 

research to arrive at decisions concerning their industry.  As will be seen, however, such research 

methodology cannot result in predictive outcomes beyond the specific case evaluated.  Whereas validated 

hypotheses may help make decisions concerning narrowly-defined problems, they do not provide a basis for 

predicting outcomes under differing conditions.   

Before considering various hypothesis-based methodologies, we will consider the methodology 

required for theory construction that has been clearly explicated by Charles Sanders Peirce in 1896 and 

Elizabeth Steiner in 1988.  From Peirce (Peirce, 1896), we have:   

§10.  KINDS OF REASONING 

65.  There are in science three fundamentally different kinds of reasoning, Deduction (called by 

Aristotle ή or ή), Induction (Aristotle’s and Plato’s έή) and Retroduction (Aristotle’s 

άή), but misunderstood because of corrupt text, and as misunderstood usually translated abduction.  

Besides these three, Analogy (Aristotle’s ) combines the characters of Induction and 

Retroduction.17   

                                                 
16 Ibid., p. 9.   
17 Peirce, Charles Sanders, (1896), notes from “History of Science” (not published), In:  Collected Papers of Charles Sanders 

Peirce, Principles of Philosophy, (ed.) Hartshorne, C. and Weiss, P., The Belknap Press of Harvard University Press, 

Cambridge, Massachusetts (1960).   
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And Steiner puts the issue into clear perspective as follows (Steiner, 1988):   

 Retroduction devises theory.   

 Deduction explicates theory.   

 Induction evaluates theory.   

To these three modes of theory development, there is a fourth as alluded to by Peirce—abduction.   

 Abduction extends theory.   

To see just what each of these modes of theory development do, consider the following:   

 Retroduction is the logical process by which a point of view is utilized to devise a conjecture or 

theory; whether that view is determined by utilizing an existing theory to devise a new one, or is obtained 

from the whole cloth of relevant knowledge by which perspectives from several relevant fields of knowledge 

are utilized to devise a new theory.   

 Deduction is the logical process by which a conclusion (theorem) is obtained as the implication of 

assumptions and previous theorems.  These derivations are strictly logical.  It is these derivations that argue 

for an axiomatic theory, since it is only axiomatic theories that have the structure required whereby an 

outcome can be used to encourage acceptance of the results of the research independent of subjective 

argument.   

 Abduction is the logical process by which a theoretical construct of one theory is utilized to analyze or 

interpret the parameters of another theory.  This is frequently used by using mathematics to develop 

mathematical models to interpret observations of a given theory.   

 Induction is the logical process by which theory is evaluated.  This is the testing of a theorem 

(logically-derived hypothesis) by which empirical observations are obtained to confirm or reject the 

theorem/hypothesis.   

The problem with hypothesis-driven methodologies has been recognized in the social sciences by 

various researchers, but no alternative has been generally accepted.  Essentially, social scientists have 

defined-themselves-out of theory development as an alternative, since they keep attempting to refine a 

methodology that cannot devise theory.   

 

Theory Construction in the Social Sciences 

To understand the place of theory in the social sciences, it is instructive to review the different 

interpretations of theory that have been proposed.  In particular, it is critical to understand that hypotheses 

do not result in theory and the almost total reliance of the social sciences on hypothesis testing is the 

primary reason why there are no generally accepted theories in the social sciences, and none that are 

comprehensive, consistent, complete and axiomatic.   

Probably the biggest problem that social scientists have to confront is the prevailing methodology of 

classical science.  Classical science is dependent on the following techniques for the development of theory:  

observation, hypothesis, and experiment.   This is an inductive process, and one that is counter to what 

Peirce and Steiner have clearly analyzed.  Both before and after Peirce, and before and after Steiner, the 

classical development of theory in the social sciences has been attempted; that is, the process of induction.   
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The reason that the social scientist has relied on induction and the resulting hypothesis-driven 

research methodology is that the social scientist interpreted the physical scientist as having developed theory 

by just such a method.  However, such has been misguided.  It is instructive to recognize that a physicist 

may consider the development of theory to be that of the classical science, even though it is not.  Since a 

physicist is not so much concerned with the process of theory development as with the development of 

theory, this confusion is understandable.  Therefore, while a physicist may assert that the development of 

theory is by induction, as claimed for Rock Theory (discussed below), in fact physicists developing such 

theory proceed in a manner defined by Peirce and Steiner as retroduction in the vertical development of new 

theory.  Therefore, when a social scientist attempts to apply the theory-development methodology of 

physics; for example, as defined by a physicist, the social scientist may believe what the physicist asserts—

that the methodology is one of induction.  Hence, the inabilities of the social scientist to in fact develop 

theory—the wrong methodology is being applied.   

This misinterpretation of theory development in the physical sciences has led to some of the 

following attempts to design a process by which theory can be developed in the social sciences.   

Karl Raimund Popper.  It is instructive to note that Karl Popper recognized the problems with the classical 

approach to the development of theory.  As an alternative, Popper proposed a new scientific methodology.  

In his two books, The Logic of Scientific Discovery18 and Conjectures and Refutations19, he introduced an 

alternative to inductive inference for theory building—hypothetico-deductive scientific method for theory 

development.   

While this approach may appear to be better than the inductive method, it falls short of clearly 

defining a methodology that will result in scientific theory.  In fact, it but jumps to the hypothesis and 

explicates the “theory” from there.  ‘Hypothetico-deductive’ is simply a process whereby we deductively 

determine outcomes from a hypothesis, but the hypothesis is not theory.  And an outcome derived from a 

hypothesis that is not founded in theory is without foundation.  As a result the tested hypotheses are just 

statements created by a researcher for the sole purpose of carrying out an experiment comparable to the 

classical approach they were to replace.  In fact, this is so even if the hypothesis is a deduction from another 

hypothesis.  Deductive inferences are no more reliable than the hypotheses upon which they are founded 

when the hypothesis is not derived from axioms, basic assumptions.   

The difference between the physical and other mathematical sciences and the social sciences is that 

in physics and the other mathematical sciences, there is an underlying theory upon which all hypotheses 

rely.  In the social sciences there is none.  It is not that there is a distinction between what the scientists in 

the physical sciences and social sciences define as ‘theory’, it is just that in the physical sciences a theory of 

physics, etc., has actually been developed.  So the question is simply, why has no such theory been 

developed in the social sciences, and in education, in particular?   

In physics the researcher proceeds from an existing theory, whether that is Newtonian Physics, 

Einstein Physics, the Kinetic Theory of Gases, Thermodynamics, or some other theory, and this theory 

provides the framework in which the scientist works.  Hypotheses in physics are in fact derived from an 

existing theory.   

                                                 
18 Popper, K., (1961), The Logic of Scientific Discovery, Basic Books, New York.   
19 Popper, K., (1963), Conjectures and Refutations, Routledge & Kegan Paul, New York.   
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Then, the predictions derived therefrom determine the value of the theory.  This is the critical point 

relating to theory construction—its main purpose is to predict.  Further, the predictions of the theory provide 

new outcomes that no intuition or hypothesis could have predicted.  While hypotheses in the social sciences 

are designed to state what someone believes to be true, and, clearly, cannot state anything that the designer 

cannot conceive, the purpose of a theory is distinctly different as follows, and is so stated by Shutt above.  

Further, the main point here is that while some statements of a theory may in fact be a “theory”, if they do 

no more than state the obvious, the “theory” is of little value.  With this in mind, we have the following:   

Purpose of a Theory—If there are no counterintuitive results derived from a theory, or if there are no 

predictions from the theory that are not obvious, or if the theory does not provide outcomes that were not seen, 

or if the theory does not obtain results that are otherwise difficult to obtain, then there is no need for the theory.   

Predictions from a theory are a result of equations (mathematical models) or logical derivations 

developed from the theory and such equations or logical schema does not rely on any preconceived notions that 

the effect could even exist.   

Therefore, the purpose of a theory is to provide the means to develop mathematical, analytical, or 

descriptive models that predict counterintuitive, non-obvious, unseen, or difficult-to-obtain outcomes.   

When all we are testing are outcomes that are preconceived, then we are missing the very purpose of 

scientific inquiry—to determine what it is that we do not know, rather than that which we have just not yet 

confirmed, or patterns that we have just not yet discerned.   

Confirmation of a hypothesis may be interesting and of limited value, but to call a body of 

knowledge that does nothing more than confirms perceptions of known events is to trivialize the notion of 

theory to the point where any proclamation becomes a theory.  That this is done all too frequently is 

confirmed by the “Charles’s Law Theory” asserted by Travers as discussed below.   

In fact, it is interesting to note that Popper (Popper, 1963) asserts, yet does not recognize the 

methodology of theory development when he cites this very non-hypothetico-deductive example:   

We all were thrilled with the result of Eddington’s eclipse observations which in 1919 brought the first 

important confirmation of Einstein’s theory of gravitation.20     

Clearly, Einstein’s theory was not devised as a result of any observation.  The observation was 

initiated as a direct result of the deductive inferences of the theory.  Einstein’s “hypothesis” concerning light 

and gravitation was obtained deductively from his theory; that is, it was a logically-derived, theory-based 

hypothesis, and not from some hypothesis founded on an observation.  A hypothesis is not a theory, and this 

example by Popper refutes the very nature of scientific discovery that Popper claims.   

 

                                                 
20 Ibid., p. 34.   
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Robert Morris William Travers.  While others before him recognized the problems with the classical 

approach to the development of theory, Robert Travers embraces it completely to the point of asserting that 

theory is developed directly from the data of observations.  In 1972, R.M.W. Travers published a book 

entitled An Introduction to Educational Research21.  Therein, Travers states:   

In the behavioral sciences, one common practice is for the scientist to develop theories that postulate 

underlying mechanisms to account for behavior as it is observed.  ...  These imaginary mechanisms are known 

as constructs.  (pp. 14-15) 

The problem that is eventually isolated may be stated in terms of a question for which the proposed 

research is designed to obtain an answer.  Sometimes the question to be answered is referred to as a hypothesis.  

(p. 81).   

It will be assumed in this discussion that the hypothesis is firmly rooted in a framework of 

theory.  (p. 81)  [Emphasis added.] 

Travers confirms that research in the behavioral sciences as practiced is concerned with explaining 

observed behavior, rather than developing theories that encompass such behavior.  This is an important 

distinction.  Theories encompass observations; they guide the researcher to look in certain directions; they 

inform the researcher about outcomes that were never conceived; most important, they do not just reflect 

what someone observes.   

First, it must be established beyond doubt but that theory is not derived from observations, and, in 

particular not from any collection of data.  Observation may suggest phenomena for which a legitimate 

theory could assist in predicting outcomes, but the theory itself must come from some other source.  For 

example, once it is proposed from observation that the earth travels in an orbit around the sun, and is then 

confirmed by further observation, a question might be:  What keeps the earth in this orbit rather than 

traveling off into space?   

It is clear that no “gravity waves” were observed, and, therefore, no empirical data identifying 

gravity is available by which some “theory” could be derived that would describe gravity.  The theory is 

clearly derived from some other means—it is the imagination and creative insight of the innovator by which 

theory is developed.  Social scientists seem to miss this very important aspect of theory development.  

Theory is developed as the result of personal insight, and not by some mechanical means by which 

observations are classified into patterns for analysis.   

With respect to gravity, we start with Newton’s Law of Universal Gravitation—a statement about the 

relationship between bodies.  This statement is not a theory; it simply defines mathematically what can be 

observed concerning the “gravitational attraction,” the effect of the construct called “gravity,” between two 

physical bodies.  It tells us nothing about what gravity is.  Further, there are numerous theories of gravity.  

One of the more well-known theories is Einstein’s General Relativity Theory of Gravity from which 

Newton’s Law can be derived.  Other theories of gravity include:  The Dynamic Theory of Gravity, the 

Inertial Theory of Gravity, and the String Theory of Quantum Gravity.  It should be clear that none of these, 

especially String Theory, were obtained by collecting data.   

The “isolated problem” cited by Travers is posed as a hypothesis.  Surprisingly, Travers asserts that 

“the hypothesis is firmly rooted in a framework of theory.”  But, what theory is he referring to?  Travers, 

quoting F.N. Kerlinger, defines ‘theory’ as follows:   

                                                 
21 Travers, R.M.W., (1972), An Introduction to Educational Research, The Macmillan Company, New York.   
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A theory may be defined as “a set of interrelated constructs (concepts), definitions, and propositions 

that presents a systematic view of phenomena by specifying relations among variables, with the purpose of 

explaining and predicting the phenomena”22.   

Theories knit together the results of observations, enabling scientists to make general statements about 

variables and the relationships among variables.  For example, it can be observed that if pressure is held 

constant, hydrogen gas expands when its temperature is increased from 20 to 40C.  It can be observed that if 

pressure is held constant, oxygen gas contracts when its temperature is decreased from 60 to 50C.  A familiar 

theory, Charles’s Law, summarizes the observed effects of temperature changes on the volumes of all gases by 

the statement “When pressure is held constant, as the temperature of a gas is increased its volume is increased 

and as the temperature of a gas is decreased its volume is decreased.”  The theory not only summarizes previous 

information but predicts other phenomena by telling us what to expect of any gas under any temperature 

change.23   

Travers, like many before and after him from the social sciences, attempts to rely on theory 

construction in the physical sciences, and physics, in particular, to justify his vision of how theory is 

developed.  Unfortunately, such vision is tainted by a misinterpretation resulting from a misunderstanding of 

just how theory in physics is actually developed.  While it is legitimate to use theory from physics as a 

paradigm for theory construction in the social sciences, when that paradigm is misunderstood, legitimate 

theory in the social sciences is compromised.   

Travers asserts:   

Theories knit together the results of observations. 

As cited previously, it is clear that theories of gravity were not obtained as the result of observing 

gravity and Newton’s Law is not theory.   

Newton’s Law may have “knit together the results of observations,” but theories of gravity were not 

derived for such knitting; they were derived for something far more substantive—to explain what gravity is 

in terms of predicting the effects of such gravity, such as the bending of light rays.  The bending of light 

rays was not observed until a theory of gravity was developed that predicted such light ray bending.  The 

observation confirmed the theory; the theory was not derived to somehow explain an observation.  In terms 

of Steiner and Thompson:   

 Retroduction devises theory—the Theory of Relativity was devised.   

 Deduction explicates theory—it was explicated that light rays bend in the presence of large gravitational fields.   

 Abduction extends theory—mathematical models assisted in extending and explicating the Theory of Relativity.  

Who does not recognize e = mc2?   

 Induction evaluates theory—the empirical event of a solar eclipse was used to evaluate whether or not light rays 

actually bend.   

By citing Charles’s Law as an example of what behavioral scientists consider as “theory,” Travers 

confirms that the behavioral scientist is not concerned with the development of theory—Charles’s Law is 

not a “theory.”  “Knitting together results of observations” does not develop theory.   

                                                 
22 Kerlinger, Fred N., (1973).  Foundations of Behavioral Research, 2nd ed., New York:  Holt, Rinehart and Winston, p. 9.   
23 Ibid., p. 15.   
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Charles’s Law determines specific ratios of certain empirical events, a process of abduction whereby 

mathematics is used to help interpret observed events.  It does not design a theory concerning such events; it 

simply establishes equations by which such events can be measured.   

The Ideal Gas Law is a generalization of both Boyle’s Law and Charles’s Law.  The Kinetic Theory 

of Gases encompasses the Ideal Gas Law.   

For example, although the Kinetic Theory of Gases describes the motion of many particles and how 

the kinetic energy of those particles produces an averaged effect of pressure, its axioms were not obtained or 

predicted by observing the rising of a balloon filled with gas, as was Charles’s Law.  The three assumptions 

upon which the Kinetic Theory of Gases is based are:   

 Matter is composed of small particles (molecules or atoms).  

 The particles are in constant motion.   

 When the particles collide with each other, or with the walls of a container, there is no loss of energy. 

These axioms are assumed from general considerations of matter, and not the specific filling of a 

balloon with gas.  Further, these axioms were not obtained as the result of any observations; they were 

presumed as the result of the creative insight of the researcher.  At the time that these axioms were 

propounded, neither molecules nor atoms could be seen.  It was simply assumed that they existed.  And, 

there certainly is no way to determine whether or not these particles are ever at rest, although the 

preponderance of evidence indicates that they are not.  And, likewise there is no way to determine if in fact 

there is never any loss of energy, it is simple assumed that there is none.  However, even today, atoms in 

gases cannot be seen, only detected and only atoms in solids can typically be seen.   

It is patent that these axioms were not obtained as the result of “observation” of any empirical event.   

The Theory of Thermodynamics is the theory of physics that encompasses the Kinetic Theory of 

Gases.  Therefore, Charles’s Law is not a theory, but an explication of the Theory of Thermodynamics or its 

sub-theory, the Kinetic Theory of Gases.   

These theories, while explaining certain empirical observations such as those relating to gases, were 

not developed as a result of Charles’s observations; they were developed to explain the behavior of large 

volumes of particles in gases.    

Once again, the social scientist has misunderstood the meaning of theorizing by which theories for 

the social sciences can actually be developed.  The paradigm of theory development in physics is of little 

value if it is not understood.  Theory development in physics as in any other science is the result of the 

logical process of retroduction by which relationships are recognized as an emendation of a point of view, 

whether that point of view is devised from existing theory or from the whole cloth of relevant knowledge.   

Retroduction is the result of the imagination of the innovator and not by the mechanical process of 

data-mining techniques by which data-patterns are devised.  Data-mining is certainly an important pursuit, 

although quite mechanical in nature, but it does not lead to the creative development of theory—it is the 

imagination and creative insight of the innovator by which theory is developed.   
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Donald Ary, Lucy Cheser Jacobs, and Asghar Razavieh.  In 1985, Ary, et al., in Introduction to Research 

in Education,24 continue to promote the misinterpretation of how theory is developed.  However, the 

misinterpretation is now directed at believing that when explicating a theory, that the premises; that is, 

axioms, must be “true.”  They assert:   

We must begin with true premises in order to arrive at true conclusions.  (p. 5)  …  The conclusions of 

deductive reasoning are true only if the premises on which they are based are true.  (p. 6) 

Unfortunately, such is not the case.  The premises, axioms, must only be presumed to be valid, not 

true.  For example, with respect to the three axioms cited above concerning the Kinetic Theory of Gases, 

there was no way to tell whether or not they are in fact true—but the scientist simply proceeded as though 

they were valid, without question.  Even being able to see atoms and molecules does not make the first 

axiom true, it but validates the axiom and adds to the preponderance of evidence that in fact the axiom is 

valid.  The axiom predicted that molecules and atoms would be found, and continued experiments 

confirmed its validity.  Might matter be composed of something other than “small particles”?  Who knows, 

since we have not yet had a chance to examine all of the matter in the universe?  But, at this time all 

physicists proceed as though all matter is so composed, since the preponderance of evidence indicates that 

they should be.   

Until researchers in the social sciences understand the import of this position, no legitimate theory in 

education or any other social science is possible.   

In addition to misunderstanding the nature of assumptions, or axioms, in the development of 

scientific theory, Ary, et al., also confuse the place of deduction and induction in the process of theory 

development.  They provide the following examples:   

The difference between deductive and inductive reasoning may be seen in the following examples:  

 

 A.  Deductive: Every mammal has lungs.   

   All rabbits are mammals.   

   Therefore, every rabbit has lungs.   

 

 B.  Inductive: Every rabbit that has ever been observed has lungs.  

   Therefore, every rabbit has lungs.  (pp. 6-7) 

First, the example of deduction provided is that of a syllogism and not from an axiomatic theory.  

They are not the same.  However, assuming that axiomatic deductive inferences are also included, and that 

the example given for induction can be appreciated, the interpretation of induction is also misleading.  What 

has actually been demonstrated by the inductive inference is that the observations of rabbits with lungs have 

confirmed the deductive inference that they in fact do have lungs—the observations have validated the 

assumption with their continuing preponderance of evidence.  Induction validates theory, it does not 

develop theory.  The validation has contributed to the preponderance of evidence that supports the deductive 

inference, and, therefore, the theory.   

 

                                                 
24 Ary, D., Jacobs, L.C., and Razavieh, A., (1985), Introduction to Research in Education, Holt, Rinehart and Winston, New 

York.   
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Most telling is their lament:   

In spite of their use of the scientific approach and accumulation of a large quantity of reliable 

knowledge, education and the other social sciences have not attained the scientific status typical of the natural 

sciences.  The social sciences have not been able to establish generalizations equivalent to the theories of the 

natural sciences in scope of explanatory power or in capability to yield precise predictions.  (p. 19) 

What they fail to recognize is the reason for this lack of theory development.   

As Popper (Popper, 1961) points out:   

[A] science needs a point of view, and theoretical problems.25 

And, as he confirms, the amassing of huge amounts of data does not, and cannot, amount to theory.  

If one were to amass the daily traffic flow at a major city intersection, one would have a large amount of 

data providing “reliable knowledge” about such traffic flow.  However, other than gaining the knowledge 

that may indicate that a traffic light is required, there is nothing by which a scientific theory could be 

developed.  This is the state of affairs in the social sciences—great amounts of knowledge have been 

acquired from hypothesis testing, but it is absolutely of no value for the development of an education or any 

other social science theory.    

Rather than adhering to a process referred to as “the scientific approach,” it would be more 

constructive to recognize that possibly even physical scientists do not follow “the scientific approach” and 

move to determine just what it takes to develop a theory for educologists and other social scientists.  

Theories in physics were not developed as the result of the “accumulation of a large quantity of reliable 

knowledge,” they were developed as the result of the creativity, insight and innovativeness of the researcher 

to recognize emendations of existing theories or from the whole cloth of relevant knowledge.  Until the 

social scientist recognizes what has to be done to be creative, the lament of Ary, et al., will continue to 

characterize the search for legitimate theory in the social sciences.   

 

                                                 
25 Popper, K., (1961), The Logic of Scientific Discovery, Basic Books, New York, p. 106. 
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A Challenge to Learning Theorists 

Who is there among Learning Theorists who can take the 21 “theories of learning” cited previously 

and devise a theory based on first principles, basic assumptions, which will encompass every one of these 

21 sets of hypotheses?  That is what is needed in the social sciences—a Learning Theoretician who has the 

insight and creativity to bring under one umbrella all of the diverse hypotheses that have been propounded 

and validated with hundreds, even thousands, of tests.  Once this is accomplished, then the validations of 

hypotheses will have some meaning, as they will validate the theory.  As it is now all they do is contribute 

to the “large quantity of reliable knowledge”—but such knowledge is meaningless in terms of predicting 

any future outcomes and do nothing to help develop legitimate Learning Theory.   

Stating hypotheses in a vacuum without their associated theory will result in confusion when trying 

to identify the underlying assumptions.  Although Travers recognized the need to anchor hypotheses in 

theory, he failed to recognize what that theory had to entail.  Regardless of how careful one is when 

preparing a hypothesis, it is almost certain that hidden or unknown assumptions have not been stated.  

Hypotheses must be part of some theory structure, or they are nothing more than the opinion of the 

researcher, even if that opinion is subsequently “validated.”  It is this process of hypothesis-creation that has 

resulted in numerous “tests” of the same subject area resulting in differing conclusions—for example, 

“human involvement is responsible for a substantial part of global warming,” versus “humans are 

responsible for less than 7% of the global warming effect, and global warming will therefore occur 

regardless of what humans do”; or “placing girls and boys together in the same class results in better 

learning for all students,” versus “separating boys and girls for instruction results in better learning for all 

students.”  Is it possible that with both of these hypotheses, especially the latter, that there are unstated 

political agendas at work that compromise the integrity of the validation?   

The problem is not necessarily the tests that provide differing results, but that there is no full 

recognition of the underlying assumptions of the theory in which the hypothesis is stated.  Theory generates 

hypotheses, hypotheses do not create theory nor are they themselves theory.  Theory, hidden or clearly 

stated, produces logically-derived, theory-based hypotheses, or theorems in more formal theories.   

The problem with the hypothetico-deductive methodology is that it does not produce theory.  In 

education, this process has never resulted in any new theory.   

To correct this problem a theory-building process that leads to legitimate theory will be presented.  

A proper methodology requires testing theory-derived hypotheses and all new applications derived from the 

hypotheses until the evaluations lead to a new theory that describes the problem based on first principles, 

“accepted and valid assumptions”—not “true premises.”   
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Glaser and Strauss.  As an alternative to the hypothetico-deductive methodology, Glaser and Strauss 

developed the Grounded Theory approach (Glaser, 1967).  Although subsequent to the publication of their 

joint text Glaser and Strauss have been involved in some on-going disputes concerning the details of the 

approach, essentially all such approaches are flawed at the outset by grounding any theory development on 

acquired data.   

However, their dissatisfaction with hypothesis-driven research is well taken.  The problem is that 

they did not recognize the underlying reason for this dissatisfaction—hypothetico-deductive methodologies 

or any other hypothesis-based methodology itself does not develop theory.   

The Grounded Theory approach asserts that theory is “discovered” as the result of systematically 

analyzing data.  As a result, this approach is very similar to, if not identical to the data mining procedures 

used to structure unstructured data.  The response to each is the same, structuring unstructured data is 

certainly helpful in recognizing established patterns within systems to evaluate existing theory, but it does 

not produce theory.   

An inductive process grounded or not, does not develop theory, whether one claims that induction 

was responsible for directly proposing a theory or the theory is deductively inferred from hypotheses—

neither process actually resulted in theory construction.   

Even trying to argue, as they do, that Grounded Theory is in some way associated with Peirce’s 

abduction fails to provide a basis for theory construction.  First, abduction is not retroduction.  Glaser and 

Strauss consider Grounded Theory as a means for obtaining theory from data patterns—that is, data mining 

techniques.  Theory development is a retroductive process, and not an inductive process nor an abductive 

process.  In this case, ‘abduction’ as ‘retroduction’ is misinterpreted.   

Since Grounded Theory is relied upon in the social sciences, we need to take a closer look at just 

what they say.  Concerning Grounded Theory:  

Most important, it works—provides us with relevant predictions, explanations, interpretations and 

applications.26  (p. 1) 

This should not be surprising, since the purported theory is a direct reflection of the data.  Whether 

or not such direct reflection provides “relevant predictions” that could not be otherwise observed is 

questionable.  The final three criteria go directly to the fact that theory is in fact not being developed.  What 

is being developed is akin to Charles’s Law of Gases and Newton’s Law of Universal Gravitation; that is, 

Grounded “Theory” is doing nothing more or less than describing what one observes concerning the 

interrelations of phenomena as defined by the data—“explanations, interpretations and applications.”   

One of the more telling representations is that it is claimed that theory is “discovered”:   

The basic theme in our book is the discovery of theory from data systematically obtained from social 

research.  (p. 2) 

                                                 
26 Glaser, B.G. and Strauss, A.L., (1967), The Discovery of Grounded Theory: Strategies for Qualitative Research, Chicago, 

Aldine Publishing Company.   
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It seems as though theories are out there somewhere just waiting to be “discovered” as one would 

discover any other empirical event or object.  It should be clear that they are not.   

While one must applaud both Glaser and Strauss for their dissatisfaction with theory development in 

the social sciences, their solution does nothing to further that end.  It is pretty much irrelevant whether your 

hypothesis is derived a priori or from the ground up, hypotheses do not generate theories.  To clearly 

discern the nature of the statements being developed, consider the following discovery and generation of a 

performance-reward process cited by Glaser and Strauss:   

In a study of organizational scientists, the analyst discovered that scientists’ motivation to advance 

knowledge was positively associated with professional recognition for doing so.  This finding suggested the 

theoretical inference that recognition from others maintains motivation.  [Tests then followed to theoretically 

verify this “theoretical inference.”]  (p. 212)   

Once again, theory seems to be something that we “discover.”  However, more to the point, this 

appears to be nothing more than an attempt to describe an event, in the same way that Charles’s Law of 

Gases and Newton’s Law of Universal Gravitation describe empirical facts.  While such descriptions are 

certainly applicable to any number of incidents, that does not make such descriptive correlations a theory; it 

simply means that one has made a rather universal observation that; for example, when people are in a 

position of power without controls, they will abuse their position.  Regardless of how many groups one 

analyzes to accumulate data that further confirms this observation, no theory has been developed.  It may be 

an interesting observation, but it is not a theory.   

Essentially, the scientific methodology of the social sciences has been hypothesis-driven.  That is, 

the definitions of both induction and hypothetico-deduction theory-building methodologies are such that 

each relies on a hypothesis that is devoid of the foundations required of a legitimate theory.   

Retroduction develops legitimate theory, whether that retroductive process results from the 

development of new theory from existing theory or the development of new theory from the whole cloth of 

relevant knowledge.  For example, the existing theories of Set Theory, Information Theory, Graph Theory 

and General Systems Theory can be used to develop theory in a very analytic manner, as was done for the 

development of the SIGGS theory model.  Alternatively, a whole cloth perspective of mathematics, 

education, chemistry, physics and the behavioral sciences develops theory by recognizing a wholeness of 

concepts they contain that provide a perspective that describes and predicts what is found in education 

systems.  For example, General Systems Theory was developed from a whole cloth perspective.  And, it is 

most likely that the challenge given previously to Learning Theorists will be resolved by one who has the 

insight and creativity to bring together from a whole cloth perspective the theories of mathematics, 

education, chemistry, physics and the behavioral sciences.   

Further, as Popper and others have recognized, theory must be axiomatic with all of its associated 

safeguards.  In addition, as cited above, the social sciences have attempted to produce theories that have a 

rigor similar to the physical sciences by introducing mathematical constructs.  Although descriptive theories 

are possible, only logico-mathematical foundations provide the means required for general acceptance and 

validation.  Moreover, it is essential that if logic and mathematics symbolisms are a part of a descriptive 

theory they are not so by mere reference, cited without substance, but the logic and mathematics must be an 

integral part of the theory.   
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This is where historical and current research in education and the social sciences generally has 

failed, as research continues to proceed from a position of validating hypotheses.  Education research is 

hypothesis-driven, rather than theory-driven.  While axiomatic logico-mathematical theories are far more 

difficult and complex than hypothesis-driven methodologies, such theories are required if educology is to 

move beyond a “My Theory” methodology to that of developing a consistent, comprehensive, complete, and 

axiomatic theory of education.  And to simply assert a priori that formal, axiomatic, or mathematical 

theories cannot apply to the social sciences is a clear refutation of any “scientific process” and places such 

social “scientists” outside the realm of science.   

To assist in bridging the gap from hypothesis-driven to axiomatic-theory-driven science, a parallel 

development in physics will be considered.  Even in physics, which is frequently considered as being 

“proven” or “empirically valid,” theories are considered to be acceptable for describing the physical world 

as a result of a “preponderance of evidence” that they produce accurate predictions of the physical world.  

The same will hold in the social sciences; that is, a theory is accepted because of the “preponderance of 

evidence” that it produces consistently valid predictions.   

Following is an example of the retroductive development of a theory in physics.   

Rock Theory 

Desired Theory:  Electrical Properties of Rocks 

Existing Theory:  Electrical Properties of Glass 

By conjecture:  the electrical properties of rocks are similar to the electrical properties of glass.   

Therefore, the existing Electrical-Glass-Property Theory is used to retroductively develop an 

Electrical-Rock-Property Theory.   

This new Rock Theory is an emendation of the existing Glass Theory.  As such, it brings with it the 

basic logic of that theory, which is comparable to other theories in physics; but, in addition it introduces new 

content and the resulting Rock Theory will contain more than what was brought to it from Glass Theory.  

Glass Theory provided the devising model by which Rock Theory is developed.   

It is important to recognize that this is not an inductive process in that there is no extensive data from 

which “patterns” are developed that “suggest” that somehow rocks are similar to glass.  To the contrary, it 

was the Glass Theory itself that was utilized to develop Rock Theory as the result of the insight of the 

innovator who recognized that the properties of the two mediums may be similar.   
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Levels of Theory Construction 

 There are several levels of theory construction required, especially in an axiomatic theory, before the 

actual desired empirical theory is obtained.  These levels are discussed below, and an example from physics 

is presented on the pages following.   

The first level consists of defining the Basic Logics; that is, the Sentential, Predicate, Class and 

Relation Calculi.   

 The Basic Logics provide the decisional rules by which theorems are formally derived within the 

theory.  These provide the customary deductive logic used in physics.   

Once the decisional logic is determined, then the levels of scientific inquiry must be defined.  These 

will each require its own axioms or other structure that will be used to deduce the outcomes of the theory.   

Various areas of physics will exemplify the relation between various levels of a theory.  Then, the 

axioms or laws will be tracked to exemplify how each higher-order theory affects the lower-order theories.   

In axiomatic theories, this will be accomplished by the introduction of appropriate axioms at each 

level.   

The following tree diagram depicts various levels of theories in physics in which each lower level is 

dependent on the axioms or laws of the one above it, but will also introduce axioms, laws or principles that 

are extended from those above it.   
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That is, recalling that the development of theory is by emendation or extension, once the initial theory has 

been designed by an emendation of another theory; for example, by means of a retroductive process, then 

the theory is constructed by extension.  These extensions can be horizontal; that is, within the existing 

theory, or vertical; that is, by introducing sub-theories.  This vertical development is shown in the following 

diagram.  So as not to make the diagram too complex, only one area of physics is extended to the following 

vertical level below it; for example, “Mechanics” and then “Statics.”   

It is recognized that Thermodynamics has sub-theories extending below it, as do Kinematics and 

Dynamics.  However, we will only consider the development of each of the following theories as one is 

extended from the one above it:   

Newtonian Physics  Classical Mechanics  Statics  Architectural Engineering 
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Newtonian Physics 

 

 

 

 

 

 

 

 

 

 

 

At this level we are concerned with the axioms, hypotheses, or principles that are used to explicate Newtonian Physics.  In 

Newtonian Physics these statements are referred to as “laws” or “postulates.”   

 

Newton’s Laws of Motion:   

 

Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep 

moving in a straight line at constant speed unless a force acts upon it.   

 This postulate is known as the law of inertia.   

 

Newton's second law states that the time rate of change of the velocity or acceleration, a, is directly proportional to the force 

F and inversely proportional to the mass m of the body; i.e., a = F/m, or F = ma.   

 From the second law, all of the basic equations of dynamics can be derived.  As noted previously, this initial theory 

provides the main assumptions by which all extensions of the theory are obtained.   

 

Newton's third law states that the actions of two bodies upon each other are always equal and directly opposite.   

 The third law is important in statics (bodies at rest) because it permits the separation of complex structures and 

machines into simple units that can be analyzed individually with the least number of unknown forces.   

 

Newton's law of gravitation is a statement that any particle of matter in the universe attracts any other with a force, F, 

varying directly as the product of the masses, m1 and m2, and a gravitational constant, G, and inversely as the square of the 

distance between them, R; i.e., F = G(m1 m2)/R2.   

Continued on Next Page 
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Continued on Next Page 

Classical Mechanics:  At this level we are concerned with the axioms, hypotheses, or principles that are used to 

explicate Classical Mechanics.   

 

Classical Mechanics is a theory of the physics of forces acting on bodies.   

The first three laws of Newtonian Physics are fundamental to Classical Mechanics and the extensions required for 

this theory.   

In order to consider the problems relevant to Classical Mechanics, the definition of the ‘position’ of a ‘point particle’ 

is introduced.  This is an extension of Newtonian Physics.  With the introduction of a point particle, the three laws are used to 

develop properties relevant to Classical Mechanics.  For example, properties relating to force and energy are developed from 

Newton’s Second Law.    

 

Classical Mechanics is subdivided into:  Statics, Kinematics, and Dynamics.  We will continue our vertical theory 

development by considering Statics.   
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Statics:  At this level we are concerned with the axioms, hypotheses, or principles that are used to explicate Statics. 

   

Statics is concerned with physical systems that are in static equilibrium.  When in static equilibrium, the system is either at 

rest or moving at constant speed.  By Newton's Second Law, this situation implies that the net force and net torque on every 

subsystem is zero.  From this constraint, and the properties developed in Classical Mechanics, such quantities as stress or 

pressure can be derived.   

1. When a wire is pulled tight by a force, F, the stress, ,  is defined to be the force per unit area of the wire:  σ = F / 

A.  The amount the wire stretches is called strain.   

2. Failure occurs when the load exceeds a critical value for the material; the tensile strength multiplied by the cross-

sectional area of the wire, Fc = σt A.   

The theory has now been extended to include properties required for the Theory of Statics.  From here, specific properties 

will be required for specific areas of application as shown by the next level.   

 

Although not considered, the following definitions are provided:   

Kinematics:  Kinematics is the branch of mechanics concerned with the motions of objects without being concerned with 

the forces that cause the motion.   

Dynamics:  Dynamics is the branch of mechanics that is concerned with the effects of forces on the motion of objects.   

Continued on Next Page 
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Architectural Engineering:  At this level we are concerned with the axioms, hypotheses, or principles that are used to 

explicate Architectural Engineering as an application of the Physics Theory of Statics.   

For example, at this level the theory extension will be with respect to specific physical problems of 

concern to architectural engineers.  For example, axioms, hypotheses, or principles related to the 

analysis of architectural structures to preclude structural failures, construction defects, expansive 
soils, explosions, fires, storms/hail, tornadoes, vehicular impacts and water leaks.   

 The theory at this level will then be used to analyze specific empirical instances.   
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Axiomatic Logics for ATIS 

The Argument for a Symbolic Logic 

Elizabeth Steiner, in her book Methodology of Theory Building27, asserts:   

One must understand the many forms (kinds) of theory if one is not to apply the wrong art, 

i.e., if one is not to criticize or construct theory erroneously.   

This same word of caution needs to be applied to the choice of logic that underlies the development 

of theory.  The logic of a theory provides the means by which validity of statements of the theory can be 

“proved” as “true,” and provides the means by which valid statements of the theory are derived.   

For a scientific theory, normally a symbolic logic; that is, formal logic, is desired as such provides a 

means to obtain rigorous proofs for the validity of statements.   

The logic required for ATIS will be an adaptation of the Sentential Calculus and Predicate Calculus 

that is normally used for mathematics and the mathematical sciences.  While both calculi are concerned with 

analyzing statements based only on the form of the statements, they differ in terms of the types of 

statements analyzed.  The Sentential Calculus is concerned with the form of the aggregate statement with no 

concern of what is contained within the statement.  The Predicate Calculus is concerned with the logic of 

predicates; that is, statements and their constituent parts, as related to quantifiers—normally the universal 

and existential quantifiers, although others will be required for the logic of ATIS.   

The advantage of a symbolic logic is that proofs are dependent only on the form of the statements, 

and not on their content.  The advantage is that while it may take great insight to discover a theorem, once 

discovered it can be checked very systematically.  The emphasis for theory development, however, is that 

the theoretician must continue to rely on intuition as the primary means of theory development, and the 

rigors of the basic logic are but a tool to assist in this development.   

Steiner defines ‘intuition’ as a “non-inferential form of reasoning.  It is a direct intellectual 

observation of the essence of what is given in experience.”28   

As will be discussed later, the System Logic schemas will be presented in two forms:  Those that are 

derived directly from the axioms and should, therefore, be considered directly descriptive of the system, and 

those that are “theory construction axioms” and are, therefore, to be evaluated through intuition or other 

analytic tools before being considered part of the theory.  The definition of ‘intuition’ by Charles Sanders 

Peirce addresses this desired theory-building method very directly when he states:   

Intuition is the regarding of the abstract in a concrete form, by the realistic hypostatization of 

relations.29   

                                                 
27 Methodology of Theory Building, Elizabeth Steiner, Indiana University, Educology Research Associates, Sydney, 

1988.   

28 Methodology, Ibid., p. 93.   

29 Collected Papers of Charles Sanders Peirce, Volume 1, Principles of Philosophy, (Editors) Charles Hartshorne and 

Paul Weiss, The Belknap Press of Harvard University Press, Cambridge (1960), §1.383, p. 203.   
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While a schema can checked by following well-defined steps, a pragmatic logic must guide the 

development and acceptance of the theory.  The need for a pragmatic logic is especially relevant for ATIS 

System Construction Theorems (SCTs) that are an integral part of the theory explication.  The far-reaching 

consequences of the introduction of this theory-development methodology is not elsewhere discussed in the 

literature, as far as this researcher has been able to determine, and will be only referenced herein since there 

may be important proprietary consequences resulting from its usage.  Essentially, the value of such theorem 

schemas will depend on the rules of construction that are defined for their usage.  However, they will be 

further considered in a later section, to as great a degree as possible, in the section entitled Significance of 

SCTs.   

While ‘formal logic’ is frequently assumed, we will state precisely what is meant by such logic.  For 

our definition, ‘symbol’, ‘language’, ‘formation’, and ‘transformation’ will be taken as primitive terms.  

Then, formal logic is defined as follows, where “=df” is read “is defined as”:   

Formal Logic =df A language that contains— 

(1) Symbols,  

(2) Well-formed formulas derived from the symbols as determined by formation rules,  

(3) Axioms that are selected well-formed formulas, and  

(4) Transformation rules, normally consisting of only one, Modus Ponens.30   

The Predicate Calculus can be either a first-order or higher-order logic.   

In first-order logic, quantification covers only individual elements (components) of a specific type or 

class; that is, only elements of a well-defined set (class) are considered.  First-order logic results in verifying 

properties of a class or subclass of elements.   

In second-order logic, quantification covers predicates.  Second-order logic results in verifying 

properties of a class or subclass of predicates.   

In higher-order logic, quantification covers predicate formulas.  Higher-order logic results in 

verifying properties of a class or subclass of predicate formulas.   

Whereas the Sentential and Predicate Calculi provide the logical foundation of the empirical 

sciences, such application must be done with care when extending that application to ATIS.  In fact, however, 

the logic required for ATIS is less complex than that required for mathematics and the mathematical sciences, 

at least initially.  The reason is that mathematics and the mathematical sciences must consider distinctions 

between “x’s” that represent “unknown” and “variable” elements.  The “unknown” uses are referred to as 

the “free” occurrences of x, and the “variable” uses are referred to as the “bound” occurrences of x.  In ATIS, 

only “bound” occurrences of x will be required.   

                                                 

30 It is noted that some treatments of a formal logic will also include Generalization as a transformation rule; however, 

in our logic Generalization is obtained as a theorem.   
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For this reason, many of the problems encountered by mathematicians relating to the Predicate 

Calculus will not be a problem in the logical analyses of ATIS.  The reason is that, as noted above, ATIS does 

not consider any statement with free occurrences of x; that is, there are no “unknowns.”  As will be seen, 

statements with “unknowns” in ATIS are non-sense.  For ATIS all uses of x are bound; that is, they are 

variables.   

In ATIS, problems are not being solved in which an unknown is being sought, but what is being 

sought are the system relations that are true for all described components of a system.  The problem with 

seeking unknowns in the type of statements that are being considered is that it is difficult, if not impossible, 

to assign any proper meaning to such statements.   

For example, the following is a bound occurrence of x:   

For x  S,  

x(Ip(x)  SF  (x)); that is, “If input increases, then filtration decreases.” 

However, ‘Ip(x)’ may or may not make sense when x is an element of just any unknown system, or 

even within a known system.  That is, let ‘Ip(x)’ be a translation of “x is the increasing input of the toput 

subsystem.”  While this English sentence is grammatically correct and has a recognizable meaning, its 

meaning within ATIS is highly suspect, since the x is now an unknown, or simply fanciful.  Even if x can be 

construed as the input of a toput subsystem, x cannot be construed as “increasing” since it is but a single 

component.  Or if it can be construed as increasing, then there are other assumptions of which we are not 

informed.  x in this context is considered an unknown, or is a free occurrence of x.  It is a situation in which 

we would have to determine under what conditions and in which systems this statement would have a proper 

meaning.  Such statements are precluded from ATIS analyses.    

 

 

Intentional and Complex Systems 

SIGGS Theory has been developed with a strong reliance on formal theory.  The formal theories of 

concern are symbolic logic and mathematics.  This report will explicate the symbolic logic that is used to 

explicate ATIS.   

In order to be selective of our logic, its application must be understood.  The types of systems with 

which we are concerned are Intentional Complex Systems.   

Intentional Systems: Intentional Systems are ones that are goal-oriented, or that have “intended” outcomes.   

For the analyst of general systems, an Intentional System is one that is predictable within certain 

parameters; that is, its behavior is predictable under certain system component relations.  The challenge is to 

determine which system component relations are predictable and what outcomes are obtained as a result of 

those relations.   

The problem of selecting a specific logic on which to base an analysis of general systems is that such 

systems are Complex Systems.   
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Complex Systems: Complex Systems are systems that are defined by large numbers of components with a large number 

of multiple types of heterarchy connections (affect relations) that determine the behavior of the system and such behavior 

is distinct from the behavior of the individual system components.   

The challenge here is to develop an analysis that can actually analyze a very large number of 

relations with multiple types of relations.   

   

Complex Systems:  Shown above are three examples of complex systems. 

The complexity is not only in terms of the people shown, each one being a complex system, 

but also the environment in terms of the foliage, structures, pottery, etc. 
 (Photographs by Kenneth R. Thompson) 

 

In general, it has been concluded that such systems cannot be analyzed with linear logics, such as 

logics founded on implication and Modus Ponens, as are the Sentential and Predicate Calculi.  However, 

such conclusions have been founded on the beliefs that systems cannot be analyzed that have multiple 

relations.  Such is not the case.   

Yi Lin31 has defined systems with multiple relations.  It is just such systems that are required for an 

analysis of ATIS.  Further, however, the assumption that the ATIS Predicate Calculus is linear is misplaced.  

By reference only, it is recognized that an APT analysis has been incorporated into the evaluation of this 

systems theory, an analysis that is non-linear.  The significance of this analysis resulting in a Sentential 

Calculus that is non-linear will be considered at a later time.  Further, of significance to an APT analysis is 

that an Axiomatic Temporal Implication Logic has been developed that may be of value to APT and its 

integration with ATIS to develop a non-linear logic.   

What is required for now is a formal method to analyze general systems, a symbolic logic and 

mathematical logic that formally express the properties and relations of a system such as system behavior, 

system structure, dynamic states, morphisms, etc.   

The Sentential Calculus is frequently defined in terms of truth tables that provide a truth-functional 

analysis of statements.  However, since ATIS is defined as an Axiomatic Theory of Intentional Systems, we 

will approach both the Sentential Calculus and the Predicate Calculus as axiomatic theories.  Such an 

approach lends itself to clear statements of theorems and proofs.  Further, such axiomatic logics are required 

since truth-table logics cannot address statements in general, and the complex statements of ATIS.   

Before presenting the axioms of the theory, a brief overview will help to transition from the truth 

table approach to the axiomatic approach.  For example, consider the Axiomatic Temporal Implication 

Logic shown on the next page.   

                                                 
31 Lin, Yi (1999).  General Systems Theory:  A Mathematical Approach.  Kluwer Academic/Plenum Publishers, NY.   
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Axiomatic Temporal Implication Logic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Axiomatic Temporal Implication Logic 

Temporal Implication Logic has been developed to address the logic with respect to empirical systems that have a 

time set and, therefore, a sequence of events.  The types of relations that are of concern in this logic are those where one event 

precedes another in time, and the first is considered to imply the other.  For example, the situation where feedin precedes 

feedout and there is a relation between the two that we wish to represent by an implication would fall within this classification.   

Using conventional logic, paradoxes will arise whereby equivalences will result in the conclusion implying the 

premise, an empirical impossibility since the conclusion is subsequent in time to the premise.  Temporal Implication Logic is 

designed to constructively handle temporal parameters of implication.  To distinguish Temporal Implication Logic from the 

implication of the Sentential and Predicate Calculi, a distinctive symbol will be used.  Whereas ‘implication’ for the Sentential 

and Predicate Calculi is normally designated as ‘’, Temporal Implication, TI, will be designated by ‘⊐’.   

The problem with TI is that equivalences are not valid when either predicate of the TI is negated.  All other logical 

operations and equivalences hold.  The following Axiomatic Temporal Implication Logic provides the logic required to 

formally prove theorems in an empirical theory where temporal implications occur.  For this logic, the operation for negation 

is not allowed, while all other operations can be defined in terms of ‘’ and ‘’, which are the two basic undefined operations.   

For the following axioms, F, P, Q, and R are statements, and x is a variable; i.e., a bound occurrence of x.   

TI-A.1.  P ⊐ PP 

TI-A.2.  P Q ⊐ P 

TI-A.3.  (P ⊐ R) ⊐ (P ⊐ (Q ⊐ R)) 

T-A.4.  x(P ⊐ Q) ⊐ (xP ⊐ (xQ) 

TI-A.5.  P ⊐ xP, if there are no free occurrences of x in P; i.e., no unknowns.   

TI-A.6.  xF (x,y) ⊐ F (y,y)  

For the following axioms, F, P, Q, and R are statements, and x is a variable; i.e., a bound occurrence of x.  The 

distinction between this axiom set and that of the logic of the Sentential and Predicate Calculi is that the following axiom has 

been removed:    

(P ⊐ Q) ⊐ (~(QR) ⊐ ~(RP)) 

In place of the above axiom, the following has been used:   

TI-A.3.   (P ⊐ R) ⊐ (P ⊐ (Q ⊐ R)) 

This replacement effectively precludes ~Q ⊐ ~P as a logical equivalence of P ⊐ Q.  It also precludes numerous other 

equivalences in which negation of statements occur.   

Following are the definitions of ‘’ and ‘’.  The exclusive “or,” ‘’, cannot be defined within this Temporal 

Implication Logic.   

 P  Q =df (P ⊐ Q) ⊐ Q   P  Q =df (P ⊐ Q)  (Q ⊐ P)   

This logic is designed specifically to address the problems relating to temporal implications as distinct from the 

standard logic that does not address this issue.   

In practice, when analyzing a specific system, both the TI Logic and Standard Logic will be utilized.  For any time-

dependent implication, the TI Logic will be used.  For all other considerations, the Standard Logic will be used.   
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Symbolic Logic 

Symbolic logic is a tool designed for scientific reasoning.  In particular, it is a tool designed for ATIS 

reasoning, and also for educology reasoning; such reasoning required for a proper analysis of an Education 

Systems Theory (EST).  It is by an interpretation of ATIS that educology is explicated, and by which an EST 

is retroduced.   

It is through the use of symbolic logic that these theories are made precise and explicated.  The main 

reason for using symbolic logic is that it is a means of obtaining precise definitions for the logical 

consequence of one statement from another.  The main advantage of a formal logic is in being able to prove 

statements about a theory, and only minimally in being able to determine conclusions about the theory.  

Intuitive arguments are the more reliable source for obtaining answers, while formal arguments are required 

for proving those answers.  For an empirical theory, like EST, answers are obtained by direct observation 

that have been predicted by the formal development of the theory and the intuitive arguments that such 

predictions are valid.  That is, especially for the Theory-Construction Schemas, intuitive arguments are 

essential for guiding the application of the formal arguments.   

One of the greatest advantages of a formal logic is that it provides a precise definition for 

determining when one statement is a logical consequence of another.  When one comprehends the power of 

this advantage, then the fruitfulness of the predictive logic will be realized.   

The objective of constructing a formal logic is that it will provide the precise criterion by which 

instances of ATIS reasoning will be determined as being correct.  With this correct reasoning, one can 

confidently provide the predictions determined by the theory.   

The logical consequence of one statement from another is obtained by a sequence of well-defined 

statements such that each statement is known to be valid; that is, is an axiom, is an assumption or is derived 

from previous statements of the sequence according to specific rules of inference.   

Valid statements are only those that are axioms or are derived only from axioms.   

Rules of inference are restricted to Modus Ponens.   

 

 

The ATIS Sentential Calculus 

The ATIS Sentential Calculus is a theory of statement formulas in which the statements are 

translations of sentences within ATIS.  For ATIS, a statement is a declarative sentence that relates exclusively 

to system components, relations or properties of ATIS.  While the Sentential Calculus herein considered may 

be equivalent to that used for mathematics and the mathematical sciences, it is important to note that the 

extended logic herein considered is that developed specifically for ATIS, and is not intended to be a logic 

generally utilized by mathematicians, although it may be applicable.     
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Statements will be expressed by capital letters; e.g., “P,” “Q,” etc., and are translations of their 

English sentences “A” and “B,” respectively.  All statement functions of the theory are derived from only 

two undefined functions:  ‘’ and ‘~’, which are read “and” and “not,” respectively.  [NOTE:  Other symbols 

than the ones shown may be used.  For example, at times the symbol ‘∙’ is used in place of ‘’.]    

Therefore, ‘P  Q’ is read “P and Q,” and is a translation of the English sentence “A and B”; and 

‘~P’ is read “not P,” and is a translation of the negation of the English sentence “A”.  While we will read 

‘~P’ as “not P,” the English sentence may take several forms depending on what is required to assert the 

negation of “A.”   

A statement formula is a string of statements combined with  and ~.    

‘’ and ‘~’ are the first two functions of the Sentential Calculus:    

(1) P  Q  

(2) ~ P 

While these functions are undefined, they will be interpreted as having “truth values” (“validity 

values”) defined by the following “truth-value tables” (“validity-value tables”).  While the values are 

commonly thought of as “True” or “False,” in fact they are but assigned values with no relation to “truth.”  

Instead, to further emphasize their application to empirical theories, they will be interpreted as “valid” and 

“not-valid”.  This will be emphasized in the following tables by using ‘₸’ for “valid” and ‘’ for “not-

valid.”  The “validity table” then simply presents the four possible combinations of ‘₸’ and ‘’ in the first 

table and the two possible combinations in the second.   

Table 1:  Validity table for the operation ‘’  

P Q P  Q 

₸ ₸ ₸ ₸ ₸ 

₸  ₸   

 ₸   ₸ 

     

 

Table 2:  Validity table for the operation ‘~’ 

P ~P 

₸  

 ₸ 
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As demonstrated in Tables 1 and 2, the operation ‘’ takes the value ‘₸’ only when both P and Q 

are ₸; and the operation ‘~’ takes the value that is the alternative to P.    

By convention, ‘P  Q’ may be, and normally is, written as ‘PQ’.   

‘P  Q’ (“P or Q”—inclusive “or”; i.e., and/or), ‘P ⊻ Q’ (“P or Q”—exclusive “or”; i.e., not 

both), ‘P  Q’ (“P implies Q” or “If P then Q”), and ‘P  Q’ (“P if and only if Q” or “P is equivalent to 

Q”) are defined as follows:   

(3) P  Q =df ~(~P ~Q)      

(4) P ⊻ Q =df ~(~P ~Q)  ~(PQ)  

(5) P  Q =df ~(P ~ Q) 

(6) P  Q =df ~(P ~Q)  ~(~ PQ) =df (P  Q)( Q  P)   

These six functions are the ones by which the Sentential Calculus is explicated.   

Since implication, , will be a very important function of the ATIS Sentential Calculus, its 

interpretation will be further considered.  The function ‘P  Q’ may be read in any one of the following 

ways, all of which are equivalent:     

 

Q is a necessary condition for P,  

P is a sufficient condition for Q, 

Q if P,  

P only if Q,  

P implies Q, and  

If P then Q.   

Consider a list of statements, P 1, P 2, …, P n.  Combine these statements by the use of ‘’ and ‘~’ in 

any manner desired, and call the result ‘’.  As a result of this construction of ,  will be called a statement 

formula.  A statement formula that is written using only ‘’ and ‘~’ will be defined as being in “standard 

form.”  The purpose of the Sentential Calculus is to determine when a statement formula is valid, and 

validity will be determined when the statement formula is “valid” pursuant to the validity-tables, or as a 

result of an axiomatic analysis for the Sentential Calculus.   

Validity tables can assist in determining when a statement formula is valid regardless of the meaning 

of the statements that make up the formula.  That is, in general, if the validity of the statements of a formula 

is unknown, then the validity of the formula cannot be determined.   
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However, statement formula validity can be determined, regardless of the validity of the statements, 

when the statement formula has a certain structure.  For example, the statement formula “~PP” is always 

false and ~(~PP) is always true regardless of the validity of P.  Validity tables can assist in determining 

under what conditions a statement formula is valid in the Sentential Calculus.  Only one example will be 

provided since discussions on truth table analyses can be found in many introductory texts on logic.   

As this is not intended to be a formal development of the Sentential Calculus, only the basic 

functions are shown as they are derived from ‘’ and ‘~’, and their validity tables will not be shown.  The 

reader of this report is encouraged to take a course in formal logic that at least includes Venn Diagrams, 

Syllogisms, and “Truth Tables” (as commonly referred to in such courses).  While these studies are a 

beginning for the comprehension of this report, it must be understood that the logic presented herein goes 

far beyond the scope of an introductory logic course.    

Consider the following statement formula:   = (P~Q)  [Q  (P  Q ~P)].   

Although operations other than ‘’ and ‘~’ are used in this statement formula, by the preceding 

definitions, they could be replaced with ‘’ or ‘~’ thus writing the statement formula in standard form as is 

required.  This also demonstrates the need for such symbolic uses, as this statement formula in standard 

form would be:   

~[~(P ~Q)~[~(Q ~([~(P ~(Q ~P))~(~P (Q ~P))]))]].  

In this statement formula, ‘P’ and ‘Q’ are “parameters” of the formula.  The question to be 

answered in the Sentential Calculus is under what conditions is this formula valid?  We proceed as shown in 

the following tables.  First, the possible values of P and Q are entered, and the table is set up so as to have a 

column assigned for every statement and operation.  While ‘~’ could be given a separate column, it is 

normally less confusing to assign it to its associated statement.   In these tables, ‘₸’ designates “valid,” and 

‘’ designates “not-valid.”  Starting with Table 4, the values shown in bold print are determined from the 

values in italics.  The column designated as “5” in Table 3 under ‘’ determines the values for the statement 

formula under the possible combinations of statement validity.  By the grouping symbols, the values will be 

determined in the order designated in the last row.   

 

Table 3:  Assign values to “P” and “Q” 

P Q (P  ~ Q)  [Q  (P  Q   ~P)] 

₸ ₸            

₸             

 ₸            

             

  1 2 1 5 1 4 1 3 1 2 1 
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Table 4:  Determine values of statements within the formula 

P Q (P  ~ Q)  [Q  (P  Q   ~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸  ₸    ₸     

 ₸     ₸    ₸  ₸ 

    ₸  ₸      ₸ 

 

Table 5:  Determine the values of the innermost operations 

P Q (P  ~ Q)  [Q  (P  Q   ~P)] 

₸ ₸ ₸    ₸  ₸  ₸   
₸  ₸ ₸ ₸    ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸        ₸ 

 

Table 6:  Determine the values of the second-level operation 

P Q (P  ~ Q)  [Q  (P  Q   ~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸ ₸ ₸    ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸        ₸ 

  

Table 7:  Determine the values of the third-level operation 

P Q (P  ~ Q)  [Q  (P  Q   ~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸ ₸ ₸   ₸ ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸   ₸     ₸ 
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Table 8:  Determine the values for the statement formula 

P Q (P  ~ Q)  [Q  (P  Q   ~P)] 

₸ ₸ ₸    ₸  ₸  ₸   

₸  ₸ ₸ ₸ ₸  ₸ ₸     

 ₸     ₸    ₸ ₸ ₸ 

    ₸ ₸  ₸     ₸ 

 

Therefore, this statement formula is valid when P is true and Q is false, or when both are false.   

While the above example of a statement formula is rather simple, the determination of its validity is 

somewhat tedious, and was elaborated in six steps to make that very point.  While “truth tables” can be used 

to determine the validity of many statement formulae, they are quite cumbersome when either long 

statement formulae are evaluated, or more than two different parameters are part of the formula.  For 

example, eight rows of values are required for statements containing three distinct parameters, and 16 rows 

are required for formulas with four distinct parameters.  In general, 2n rows are required for n distinct 

parameters.  An even more complex evaluation arises if; for example, a “contingent” value, C, is introduced.  

In this case, two parameters would require nine rows, and in general 3n rows are required for n distinct 

parameters.   

To see the efficacy of moving from validity table analyses to axiomatic analyses, we will evaluate 

the statement formula:  P  [(P  Q)  Q] as shown in Table 9.   

 

Table 9:  Statement formula, P  [(P  Q)  Q], analysis 

P Q ~Q  [(P  Q)]  ~P] 

₸ ₸ ₸ ₸ ₸ ₸ ₸ ₸ ₸ 

₸  ₸ ₸ ₸   ₸  

 ₸  ₸  ₸ ₸ ₸ ₸ 

   ₸  ₸    
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Modus Ponens 

From Table 9, it is seen that the statement formula is a tautology; i.e., it takes the value “₸” under 

any value of P and Q.  This statement formula is so important that it has been given the name “Modus 

Ponens.”  Expressed in analytic form, the statement formula is:   

P, P  Q ⊢Q 

This formula is read:  “P and P  Q yields Q.”  This formula means that if you are given P and P  Q, 

you can conclude Q.   

Modus Ponens is applied when you have either proven that P and P  Q are valid or are 

assumptions.  The importance of Modus Ponens for our theory is that it provides the one and only logical 

rule for proving theorems.   

 

Modus Talens 

Another important statement formula is entitled “Modus Talens,” and has the form ~Q  [(P  Q) 

 ~P].  The validity table for this statement formula is shown in Table 10.   

Table 10:  Statement formula, ~Q  [(P  Q)  ~P], analysis 

P Q ~Q  [(P  Q)]  ~P] 

₸ ₸  ₸ ₸ ₸ ₸   

₸  ₸ ₸ ₸   ₸  

 ₸  ₸  ₸ ₸ ₸ ₸ 

  ₸ ₸  ₸  ₸ ₸ 

 

Modus Talens is used when you have ~Q and P  Q.  Given these two statement formulas, you can 

conclude ~P.  Formally, this statement formula is:  ~Q, P  Q ⊢ ~P.   

Numerous logical tautologies can be confirmed by the use of validity tables.  Having done so, the 

results can be used without recourse to the validity tables.  For example, by use of validity tables, it can be 

shown that ‘’ is a transitive operation.  That is, if P  Q and Q  R, then we can conclude that P  R.  

With the great number of axioms contained in ATIS, the transitivity operation greatly facilitates the proving 

of numerous theorems.  Formally, this transitivity property is:  P  Q, Q  R ⊢ P  R.   

Applying the transitivity property of ‘’ to the following SIGGS axioms the efficacy of such formal 

treatments of theories is seen once again.   
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Consider Axioms 144 and 150, stated as follows:   

Axiom 144:  If filtration decreases, then isomorphism increases. 

Axiom 150:  If automorphism increases, then input increases and storeput increases and fromput 

decreases and feedout decreases and filtration decreases and spillage decreases and efficiency decreases. 

Stated formally, these axioms are:   

Axiom 144:    I   

Axiom 150:  A  Ip  Sp  Fp  fo      SE
   

For Axiom 150, we will select only one of the conclusions, , to prove.     

Given:  Axiom 150:    A  and   

Axiom 144:    I.    

∴  A  I 

That is, from the transitivity of ‘’, we can obtain the theorem:  ⊢ A  Ifrom Axioms 

150 and 144.     

That is, if system automorphism increases, then isomorphism increases, and no validity 

tables are required to prove this theorem.   

The purpose of a symbolic logic is to be able to consider the parameters of a theory without 

recourse to the meaning of the concepts, and the purpose of the Sentential and Predicate Calculi is 

to derive theorems based solely on the form of the statement formulas.  This task of deriving 

theorems can be more easily accomplished by the use of an axiomatic approach to the Sentential 

and Predicate Calculi.   

A note is required concerning the meaning of the symbols used above.  Since they are part of 

a statement formula, they must be “statements.”  For example, the above formalization of Axiom 

144 is of the statement:  “If filtration decreases, then isomorphism increases.”  Formally, this is of 

the form “P  Q,” where ‘P’ is “filtration decreases” and ‘Q’ is “isomorphism increases.”  

However, there is more contained in these statements to actually make them “statements.”  They 

will be considered to read as follows:  ‘P’ is “The system filtration decreases”; and ‘Q’ is “The 

system isomorphism increases,” both of which are now declarative sentences about an ATIS system.  

Whenever a property is cited in an axiom, it is to be understood that the property is actually 

contained within a statement.   
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Axiomatic Sentential Calculus 

Whereas validity tables are convenient for determining the validity of statement formulas, such 

tables cannot be generalized to all statements.  To date, only an axiomatic method is known that is able to 

obtain validations of general statements.  As a transition to the axioms required for validation of general 

statements, we will first consider a subset of those axioms, the validity-value axioms.  These axioms will 

provide an excellent transition to axiomatic logic, since these axioms will produce those statements 

considered earlier, the statement formulae that can be validated by use of a validity table, and, therefore can 

be easily validated by two methods—validity tables and axioms.   

In general, the axiomatic definition of valid statements is obtained by the following process:  (1) 

Certain selected statements are called ‘axioms’ (and their selection may be somewhat arbitrary and may be 

modified to achieve certain objectives); (2) A transformation rule is selected, normally Modus Ponens 

(although other transformation rules are possible; for example, Generalization or Modus Talens); and (3) 

‘Valid statements’ are those statements that are either axioms or can be derived from two or more axioms by 

successive applications of Modus Ponens.   

It is worth mentioning again that only the form of the statements and not their meaning determines 

valid statements.   

There are three axioms of the Valid-Value Sentential Calculus and one logical rule.   

Let ‘P’, ‘Q’, and ‘R’ be statements of the theory, then— 

The logical rule is Modus Ponens and the axiom schemas are:   

(1) P  PP 

(2) PQ  P 

(3) P  Q .. ~(QR)  ~(RP) 

There are an infinite number of statements that will comprise the valid-value axioms; however, all 

axioms will be of one of the above three general forms, the axiom schemas.  Further, all theorems of the 

Valid-Value Sentential Calculus can be derived from these three axioms and Modus Ponens.   

A theorem will take the form:  P1, P2, …, Pn ⊢ Q, where the P’s are statements and Q is an axiom, 

or Q is one of the P’s, or Q is derived from the P’s by repeated applications of Modus Ponens.   

‘⊢’ is read “yield”, or in the case when we have only ‘⊢Q’ it is read “yields Q.”    

The theorem P1, P2, …, Pn ⊢ Q indicates that there is a sequence of statements, S1, S2, …, Sm, 

called the proof of the theorem, such that Sm is Q and for each Si, either:   



ATIS Theory Development:  Logics, Models & Theories … Types of Systems … Research Methodologies      Page 48 of 99 

 

 
© Copyright 1996 to 2015 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

(1) Si is an axiom,  

(2) Si is a P; i.e., an assumption,   

(3) Si is the same as some earlier Sj, or  

(4) Si is derived from two earlier S’s by Modus Ponens.   

The sequence S1, S2, …, Sm is a proof within the Symbolic Logic so that Q is logically derived from 

the assumptions P1, P2, …, Pn.   

The following theorems are readily provable concerning ⊢:   

Theorem.  If P1, …, Pn ⊢ Q, then P1, …, Pn, R 1, …, R m ⊢ Q.   

Proof:  Let S1, …, Ss be the proof of P1, …, Pn ⊢ Q where Ss is Q.  Clearly that same 

sequence will yield Q regardless of any additional assumptions.   

Theorem.  If P1, …, Pn ⊢ Q1 and Q1, …, Qm ⊢ R, then P1, …, Pn, Q2, …, Qm ⊢ R.   

Theorem.  If P1, …, Pn ⊢ Q1, R1, …, Rm ⊢ Q2, and Q1, …, Qq ⊢S, then  

P1, …, Pn, R1, …, Rm, Q3, …, Qq ⊢S.   

Theorem.  If ⊢Q1 and Q1, …, Qm ⊢R, then Q2, …, Qm ⊢R.   

Theorem.  If ⊢Q1, ⊢ Q2, …, ⊢ Qm and Q1, …, Qm ⊢R, then ⊢R.   

 

Since our main concern is to provide the means to explicate ATIS, the Sentential Calculus will not be 

further explicated.  The following List of Logical Schemas is provided to facilitate the explication of the 

theories.  This list is not exhaustive, but does represent those schemas that lend themselves to a fruitful 

explication of the theories.  Following this list, the schemas will be used to demonstrate the value of such a 

symbolic logic by providing proofs of theorems.  It is noted that technically these schemas are not actually 

part of the Sentential Calculus but are part of the metatheory, the Meta-Sentential Calculus.  They are 

statements about the calculus that define the form or schemas that the theorems of the theory actually take.   
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List of Logical Schemas 

The following list of the logical schemas is provided to facilitate the proof of theorems.  The proof 

of various theorems for ATIS will be presented in a separate report.   

The “System Construction Theorems” (SCTs), derived directly from the axioms of the Sentential 

Calculus and the intuitive creativity of a researcher or interpreter, provide a means of developing the 

connectedness of a system or of determining predictive outcomes.  These should prove important in 

developing the system topology.  The significance and use of SCTs will be clarified before presenting the 

logical schemas.   

 

Significance of SCTs 

System Construction Theorems (SCTs) provide the means to develop, enhance or further the 

explication of a theory.  The significance is that they provide additional statements than what are found in 

the assumptions.  Since they are statements of the theory, however, they are valid statements, they are not 

just any statements whimsically selected.   

They may, however, be statements that are intuitively derived and thereby declared to be valid 

statements of the theory.  As an initial example; however, consider the case where the derived statement is 

an axiom.  As an axiom, it is a valid statement of the theory.   

Consider Logical Schema 3:  P  R ⊢ P  (Q  R).   

Let Q be Axiom 105 of SIGGS:  “If centrality increases, then toput decreases.”   

Then, regardless of what P and R represent, the following is valid:   

P  R ⊢ P  (“If centrality increases, then toput decreases” [Axiom 105]  R),  

where P and R are statements of the theory and P  R is assumed to be valid.   

 

For example:   

Let P be the statement:  “System complete connectivity increases”; and  

Let R be the statement:  “System feedin increases.”   

Then, P  R is a statement of Axiom 100; and, therefore P  R is valid.   
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Then, from our theorem we have:   

“System complete connectivity increases”  “System feedin increases” ⊢  

“System complete connectivity increases”  (“If centrality increases, then toput decreases”  

“System feedin increases”).   

The conclusion of this statement is equivalent to the following:   

“System complete connectivity increases”  (“centrality decreases or toput decreases”  

“System feedin increases”).   

It is probably clear that this is a non-obvious theorem; hence the value of the formal logic is 

established.  But, what does it tell us?   

This theorem provides a means to control a system.  If the target system has complete connectivity 

increasing and system feedin increasing then the assumption of the theorem is satisfied.  Now, assume that 

the target system is a terrorist system and that it is desired to decrease the complete connectivity.  One way 

to accomplish this is to decrease toput and feedin.  By decreasing toput and feedin under these conditions, 

system complete connectivity will decrease.  Further, decreasing toput decreases feedin.  Therefore, only 

one factor, toput, has to be controlled in order to achieve the objective of decreasing complete connectivity.   

This analysis demonstrates several points.  First, there are numerous non-obvious theorems that can 

be derived from a logical axiomatic analysis of the theory.  Second, some of the outcomes, as with the above 

theorem, are counter-intuitive.  In this case, the measure of complete connectivity is dependent on the 

potential complexity of the system, such complexity being degraded when toput is reduced.  Third, the SCTs 

provide a fruitful means to analyze a system, but may require the intuitive skill of the analyst.  On the other 

hand, where the logic is required for applications similar to SimEd, by defining certain “replacement” or 

“substitution” rules that will allow for selection of various properties or newly acquired data such logic can 

be programmed.  These rules will probably have to be developed by an analyst who has a grasp of the 

pragmatic content of the theory.   
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Logical Schemas 

SCTS:  “System Construction Theorem Schema”.   

Logical Schema 0:  P Q, Q R ⊢ P R   (Transitive Property of ) 

Logical Schema 1:  P Q, R Q ⊢P  R  Q 

Logical Schema 2:  P Q, R S ⊢ PR QS 

Logical Schema 3:  P R ⊢P (Q R)   (SCTS) 

Logical Schema 4:  P Q, P R ⊢ P QR 

Logical Schema 5:  ⊢Q P .. P Q  

Logical Schema 6:  If  P Q, then P ⊢ Q; and If  P ⊢Q, then P Q ::  

     P ⊢Q  ..  ⊢P Q    

     “P ⊢Q .. P Q” is the Deduction Theorem. 

Logical Schema 7:  ⊢(PP)  

Logical Schema 8:  ⊢ P .. P  

Logical Schema 9:  ⊢P  P  

Logical Schema 10:  P ⊢Q PQ      (SCTS) 

Logical Schema 11:  (QR) ⊢ R Q    

Logical Schema 12:  P Q ⊢P R QR     (SCTS) 

Logical Schema 13:  R S ⊢PR  PS     (SCTS) 

Logical Schema 14:  PQ P⊢ P (Q  R)    (SCTS) 

Logical Schema 15:  ⊢PQ R.. P (Q R) 

Logical Schema 16:  P Q ⊢P (Q R)   (SCTS) 

Logical Schema 17:  P R ⊢P (Q R)   (SCTS) 

Logical Schema 18:  P Q, P R ⊢P (Q R)  

Logical Schema 19:  P, P Q ⊢Q      (Modus Ponens) 

Logical Schema 20:  ~Q, P Q ⊢~P      (Modus Talens) 
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The ATIS Predicate Calculus 

While the Sentential Calculus has been well presented so as to demonstrate the usefulness of a 

formal logic, the ATIS Predicate Calculus will be only briefly discussed with what is required to understand 

its application to the analysis of the target theories.  Unlike the Sentential Calculus, however, it is important 

to note that this Predicate Calculus is distinctly different from that required for mathematics or the 

mathematical sciences.  Without going into any great discussion, the reason is that for ATIS only bound 

occurrences of x are considered since free occurrences do not have any apparent meaning within ATIS.   

It was previously stated that the difference between the Sentential and Predicate Calculi was that the 

Sentential Calculus is concerned with the form of the aggregate statement with no concern of what is 

contained within the statement, whereas the Predicate Calculus is concerned with the logic of predicates; 

that is, statements and their constituent parts, as related to quantifiers—normally the universal and 

existential quantifiers.  This extension will now be considered.   

To make the transition from the Predicate Calculus required for the traditional mathematical 

sciences and that required for the mathematical science of ATIS, we will first consider the predicate notation.  

The predicate notation will take the form of a function; e.g., P(x), where ‘x’ is an “unknown.”  If we can 

prove that P(x) is valid for the unknown ‘x’, then we have ⊢P(x).  If we have ⊢P(x) then we can replace 

‘x’ with a variable and will conclude:  ⊢xP(x).  For ATIS, it is assumed that all predicates are bound, and, 

therefore, all occurrences of x are variables and the validity-value of all predicate functions can be 

determined.  Therefore, with respect to any occurrence of x, the task is to assert ⊢xP(x) and determine if a 

proof exists.    

Since Alonzo Church, in 1936, proved that there is no decision procedure for the Predicate Calculus, 

then the only affirmative conclusion that is possible concerning ⊢xP(x), with respect to the Predicate 

Calculus, is that it is valid.  If no such affirmative conclusion can be found, then nothing more can be said 

concerning the validity of the statement.  Further, the conclusion is even stronger.  Church proved that there 

is no decision procedure regardless of what axioms are considered.    

This is great news for the logician and for any researcher or analyst who is attempting to 

evaluate ATIS or an EST (Education Systems Theory).  What Church has proved is that there will always be a 

need for the researcher and analyst, since the Predicate Calculus, and the ATIS Predicate Calculus, in 

particular, has no decision procedure, and, therefore, cannot be fully programmed.  It is not asserted that the 

ATIS Predicate Calculus cannot be partially programmed, because it can be, but it cannot be completely 

programmed.  The part that can be programmed, as seen below, is that part that results from the axioms that 

define the ATIS Sentential Calculus.   

This point is worth elaborating.  This researcher has been attempting to define the scope of this 

theory that is programmable, since such programs will clearly make the theory and any of its proprietary 

software products more appealing to users.  As reflected by the extensive list of theorems that can be 

derived from the ATIS Sentential Calculus, numbering in the tens-of-thousands, and the numerous Theorem 

Schemas cited previously, it is seen that a very fruitful analysis of a system can be obtained.   
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Further, this researcher has proposed that utilizing data mining technologies can even extend the 

value of this fruitful analysis.  That is, the theory software can be used as an interpreter of the data mining 

structured outcomes, thus enhancing the time-sensitive results required in a terrorist environment, and 

possibly in an educational environment.  With this technology, it is no longer required that one must wait for 

a pattern to be determined by the data mining, but that the theory analysis will enhance the ability of the 

data mining technology to recognize patterns and predicted terrorist behavior or targets much earlier than 

utilizing the data mining technology alone.   

That said, it must also be recognized that when evaluating a specific system, the logic is only semi-

decidable.  That is, an analyst can affirmatively determine, within the theory, that a theorem is valid, but 

cannot, under any circumstances, prove that it is not-valid.  The reason for this is three-fold:  (1) As soon as 

an empirical system is recognized, the problem for the analyst reverts to considerations within the ATIS 

Predicate Calculus; (2) Church has proved that such considerations are only semi-decidable; and (3) The 

reason that such problems considered in an empirical system are only semi-decidable is that one never 

knows if all possibilities have actually been considered in the proof.  Systems, especially behavioral 

systems, are complex.  This must be recognized and recognized as something positive.  That is, the 

researcher and analyst have some very difficult tasks confronting them.   

So, is the analyst without recourse?  Not at all.  Creative proofs from outside the theory are possible.  

If a reasoned argument can be found that can be construed as part of the logic of the meta-theory, then a 

particular theorem can be cited as being not-valid.  Once the theorem has been proved in the meta-theory as 

being not-valid, one is then justified by claiming that the theorem is not-valid within the theory.  The 

significance of this is that the results of this proof can then be inserted into the theory as though it had been 

proved within the theory.   

This researcher has previously cautioned against inserting theorems directly into a computer 

program that has been developed as a model of the theory.  However, that precaution was with respect to the 

ATIS Sentential Calculus.  The ATIS Predicate Calculus is an entirely different matter.  Whereas the theorems 

of the ATIS Sentential Calculus can be obtained directly from the axioms and, therefore, do not warrant the 

arbitrary insertion of theorems, the same cannot be said for the ATIS Predicate Calculus.  Further, there will 

be additional work for the researcher and analyst once the initial logic has been developed and implemented 

for theory model applications.  There are additional analyses that can be made with respect to empirical 

systems.  It is intended that the structural properties of a system can be recognized as the topology of the 

system, and that the power of mathematical topology can be modified, as the Predicate Calculus has been, 

in such a way that the power of a modified mathematical topology can be used to assist in the analysis of a 

system.  Such analyses may also have to be performed by a researcher or analyst directly with little or no 

reliance on a computer program.  These results also will have to be manually inserted into any computer 

program that has been designed for a particular system.   

What this simply means is that researchers and analysts of behavioral systems will always have a 

job.  To this researcher, that is something to look forward to.   

As noted previously, due to the nature of the target theories, there will be no need to distinguish 

between “free” and “bound” occurrences of ‘x’, since, without any loss of generality, all occurrences of ‘x’ 

are considered to be bound.  In view of this, we have the following axioms:   
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(1) P  PP 

(2) PQ  P 

(3) P  Q :: ~(QR)  ~(RP) 

(4) x(P  Q) :: xP  xQ 

(5) P  xP 

(6) xP(x,y)  P(y,y) 

It should be recognized that the first three axioms are simply taken from the Sentential Calculus; that 

is, all such resulting theorems are still valid in the Predicate Calculus.   

As seen from the axioms, the only quantifier is the universal quantifier.  The existential quantifier 

will be defined in terms of the universal:   

xP =df ~x~P 

From this definition, we have the following equivalences:   

⊢xP  ~x~P  

⊢xP  ~x~P 

⊢~xP   ~P 

⊢~xP  x~P 

There are special conditions for  for which additional notations are desired.  These are the 

conditions in which there is exactly one x for which P is valid and when there are n x’s for which P is valid.  

These notations are as follows:   

1xP(x) denotes that there is only one x for which P(x) is valid; and  

n
P(x) denotes that there are exactly n x’s for which P(x) is valid.   

In addition to the two quantifiers,  and , there are two additional quantifiers, one that will be used 

to specify a single component and one that will specify a class of components.  These quantifiers are the 

descriptor quantifier, , and the class quantifier, ŵ.  ‘xP(x)’ is read, “the x such that P(x)”; and ‘ŵP(w)’ is 

read “the class of w determined by P(w).”  These are defined as follows:   

xP(x) =df 
1xP(x); and  

ŵP(w) =df w(w  P(w)) 

‘xP(x)’ is the name of the unique object that makes P(x) valid.   
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The class quantifier gives a convenient means for defining a universal class and a null class.  If there 

are no w’s in P, then ŵP designates the universal class, U, if P is valid, and the null class, Ø, if P is not-

valid.   

An important clarification needs to be made concerning the meaning of ‘quantifier’.  A logical 

quantifier designates a qualification of a class by indicating the logical quantity; that is, the specific 

components to which the qualification applies.  ‘P’ or ‘P(x)’ is the scope of the quantification; that is, the 

scope of what is qualified.  This will be a frequently used concept in the analysis of systems.  The ‘Logistic 

Qualifiers’ are those predicates that will be used to quantify a specific set.  For example, Toput becomes 

Input as the result of quantifying Toput with respect to the Logistic Qualifiers.  This system transition 

function is defined as follows:   

:(Tp  L i=1:n(Pi(wTp))  Ip ) = ŵIpP(wTp)      

where ‘i=1:n’ designates “i varies from 1 to n,” and ‘Pi(wTp)’ is a qualifying statement in L  with 

respect to w in Tp.   

‘ŵIpP(wTp)’ designates the Input Class determined by the Toput Class qualified by the P(w)’s in L  

that make P(wTp) valid.   

An equivalent notation for ŵP is {w | P}, which is frequently used in mathematics.   
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Theory Building 
 

In the preceding sections, the need and requirements for an axiomatic logic have been presented.  In 

that discussion the problems relating to theory building that relies on induction, hypothetico-deductive and 

grounded methodologies were discussed.  Now we will consider some specific concerns relating to theory 

building itself.  What follows will be a discussion of several specific points and how to determine if theory 

building is actually being pursued, and if it is, what one must look for in that theory building and how to 

validate the theory once it is developed.   

First, we will consider how to determine if the validation of a hypothesis is theoretically sound.  The 

basic test is simply to ask the following question:   

Was the hypothesis derived from a theory that is comprehensive, consistent and complete; 

and, if so, is the theory axiomatic?   

With respect to the requirement that the theory be axiomatic, it is simply a recognition that only 

axiomatic theories have been found to provide the rigorous analyses required to obtain confidence in the 

theory results.  If an axiomatic theory cannot be obtained, then the results can always be questioned either 

with respect to the validation process or with respect to the “underlying assumptions” that are not stated in 

the theory.  Descriptive and statistical-based theories can never be individually predictive and any results 

can always be questioned with respect to the descriptive theory, and statistical-based theories, by definition, 

can never be individually predictive.   

Put another way, simply ask yourself:   

 Was the hypothesis derived from theory?  If so, what is it?   

Once the theory has been established, then the next question that needs to be addressed concerns the 

logical basis of the theory.  Most often it will be founded on a Predicate Calculus.  If so, then there are 

additional questions that relate to that logic.   

Any theorems that are derived from the Predicate Calculus are a result of the form of the theorems 

and not their content.  The theorems of the theory that are derived directly from the basic logic are true 

because of their logical structure, and not at all because of their content.   

In addition to theorems that are derived from the basic logic, there will be theorems that are derived 

from ATIS-axioms.  Further, there will be theorems that are derived from the axioms obtained as a result of 

the specific empirical system being considered.  Axioms and theorems from the latter two will depend upon 

the meaning of the terms employed within the theory or system, and not due only to their logical structure.   

 

 



ATIS Theory Development:  Logics, Models & Theories … Types of Systems … Research Methodologies      Page 57 of 99 

 

 
© Copyright 1996 to 2015 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

Class Calculus 

Before considering the axioms of ATIS and how to develop axioms for specific systems, the 

axioms of the Predicate Calculus will be extended to include the Class Calculus.  For this 

extension, a more precise and formal development of the basic logic will be presented so that a clear 

definition of term, statement and formula can be obtained.   

Stratified statements determine classes.  However, for ATIS, the initial partitioning of the 

system components and the definition of the system affect relations determine the stratification.  

Affect relations are, by definition, one class or type higher than the system components, and there 

is, therefore, no confusion of types.   

A statement is determined by the following symbols:   

~        ^      “variables”: x1  x2  …  xn  x  y         “statements:”  P  

Q  R  P(x)  P(y)  P(yQ)  P(x,y)  P(y,y) 

Following are the definitions of ‘term’, ‘statement’ and ‘formula’.  Due to their use in ATIS, 

all variables are bound.   

(1) term =df  

(i) x1  x2  …  xn  x  y; where “…” has its accepted meaning 

(ii) xP 

(iii) ŵP 

(2) statement =df  

(i) AB, where ‘A’ and ‘B’ are terms, ‘A’ is a component and ‘B’ is a 

class, since only sentences concerned exclusively with classes are 

considered to be statements 

(ii) xP, where ‘x’ is a variable and ‘P’ is a statement  

(iii) ~P, where ‘P’ is a statement 

(iv) PQ, where ‘P’ and ‘Q’ are statements 

(3) formula =df  

(i) S, where ‘S’ is comprised of a sequence of statements constructed with 

‘~’ and ‘’  

(4)  =   =df x(x  x) =df  =  =df  =x   

‘P’ is referred to as the scope of the quantifiers.     
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Definition (4) defines equality of sets.  The last notation,  =x , is very useful in ATIS.  Due 

to the complexity of systems, it may be that various properties are defined with respect to the same 

set of components.  Rather than having to consider numerous sets, the properties can be defined 

with respect to a specific subset.  For example, one may wish to determine the behavior of a system 

with respect to various subsets.  Such can be designated as follows:  S =B V; S =C L; and S =D G.  

Then an APT analysis can be performed on the following set:  ℓ = {V, L, G}.   

With the foregoing definitions, we now have the following axiom schemas extended from 

the Predicate Calculus to include the axiom schema for the Class Calculus, Axiom (12).   

Transformation Rule, Modus Ponens:  P, P  Q ⊢ Q 

(1) P  P P 

(2) P Q  P 

(3) (P  Q)  [~(QR)  ~(RP)] 

(4) x(P  Q)  (xP  xQ) 

(5) P  xP 

(6) xP(x,y)  P(y,y) 

i. xP(x)  P(y) 

(7) x,y,z[(x = y)  (xz  yz)] 

(8) x1,x2,…,xn(xP(x)  P(yQ) 

(9) x1,x2,…,xn[x(P  Q)  (xP = xQ)] 

(10) x1,x2,…,xn[xP(x)  yP(y)] 

i. x1,x2,…,xn[xP = yQ] 

(11) x1,x2,…,xn[1xP  (x[xP = x  P])] 

i. x1,x2,…,xn[1xP(x)  (x[xP(x) = x  P(x)])] 

ii. x1,x2,…,xn[1xP(x)  (y[xP(x) = y  P(y)])] 

(12) yx(xy  P) 

Axiom Schemas (1) to (3) are the valid-value axioms of the Sentential Calculus.   

Axiom Schemas (4) to (6) allow for generalization from ⊢P to ⊢xP.   

Axiom Schema (6) provides for substitution of a value for a variable.   



ATIS Theory Development:  Logics, Models & Theories … Types of Systems … Research Methodologies      Page 59 of 99 

 

 
© Copyright 1996 to 2015 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

Axiom Schema (7) allows for substitution of equivalent terms resulting from equality.   

Axiom Schemas (8) to (11) are the axiom schemas for .   

Axiom Schema (8) asserts that if P(x) is true for all x, then yQ is the name of one of 

those objects.   

Axiom Schema (9) asserts that if P and Q are equivalent for all x, then xP and xQ 

are names of the same object.   

Axiom Schema (10) allows for change of variables.   

Axiom Schema (11) asserts that if there is a unique x that makes P valid, then xP is 

that x.   

Axiom Schema (12) is the schema that introduces classes.  This axiom allows for the Set 

Calculus to be integrated into the formal theory.   

 

Relation Calculus 

For ATIS, we are concerned with attempting to use as many mathematical constructs as possible 

while clearly describing the desired system properties.   

While mathematics is frequently concerned with functions, for ATIS the concerns may be directed 

more toward relations.   

However, while functions are normally considered as being single-valued, many-valued functions 

are possible.  The relation ⟦x,x2⟧ is a multi-valued function.  ⟦x,x<y⟧ also is a multi-valued function.  These 

are well-defined functions since the ordered pairs that define the functions are well-defined.  Whether or not 

these are considered functions or relations is not clear; that is, there does not seem to be any clear distinction 

between the two.  With ‘function’ being restricted to single-valued functions, these examples would be 

considered as relations.  One distinction has been that ‘function’ was restricted to relations that resulted in 

well-defined curves, whereas ‘relation’ would be for those statements that defined all other 

characterizations.  Thus, ⟦x,x2⟧ would be a function, and ⟦x,x<y⟧ would be a relation.   

In ATIS, the distinction between ‘function’ and ‘relation’ will not be considered.  The only question is 

whether or not the appropriate mathematical construct clearly portrays the system characteristic being 

considered.  It appears as though most of the concerns for ATIS will be with respect to morphisms; that is, 

relational mappings.  Whether such mappings are ‘functions’ or ‘relations’ is moot.  If a single-valued 

function is required, then such can be stated.  For purposes of analysis, morphisms or relations will be 

considered, since functions are a special type of relation.  Further, where the “function notation” is used, it is 

not to be construed as restrictive.  Normally, it will probably designate a single-valued function, but such in 

this theory is not required.  Either the context or by definition, the type of function will be determined.   
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The Relation Calculus for ATIS is concerned with the affect relations that define a system and the 

morphisms that characterize the properties of the system as derived from those affect relations.   

The Relation Calculus axiom schemas will be presented first.  This will complete the presentation of 

the formal logic.   

Following the presentation of the formal logic, the content required for a General System Theory will 

be introduced.  First, the axiom that asserts the existence of a General System will be introduced.  Then the 

axioms that establish the empirical systems that are to be analyzed and the criteria for such analysis will be 

given.   

We have already introduced the notation that will be used to identify a class or set of objects, or 

components, ŵP(w).  Now the characterization of those components will be discussed.   

Whereas x identifies a single component within the set, it may be that we wish to identify an object 

that consists of two or more components.  The following notations will be used to identify such sets.   

‘{x, y}’ identifies a component of a set that consists of  two single components.   

If it is desired to specify that the set consists only of binary-components, then the following notation 

will so indicate:  ŵ2
P(w).  This notation designates that the class or set of components consists only of sets 

each of which contains two single components.   

Hence, ‘ŵ2
P(w)’ designates a family of binary sets.   

By extension, ‘ŵn
P(w)’ designates a family of sets, each member of which contains n components; 

that is, {x1, x2, …, xn}iw.   

For affect relations, an additional type of set will be required.  This set will contain binary-

components and a set that contains one of the binary-components in a unary-component set.  That is, the set 

will be configured by the following representation:   

{{x}, {x, y}} 

Where each unary-, binary-component set is included and no other sets are included.  This notation is 

frequently represented by the ordered pair:  (x,y).   

For this set, the class quantifier will be represented as:  ŵ2|1
P(w).   

By extension, ‘ŵn|n-1|…|1
P(w)’ designates a family of sets that include all and only those ordered 

subsets of the largest set.  For n = 4, the family of sets would be characterized by components of the form:  

{{a}, {a,b}, {a,b,c}, {a,b,c,d}} = (a,b,c,d), an ordered 4-tuple.   

With the foregoing definitions, we now have the following axiom schema for the Relation Calculus, 

Axiom (13), which introduces relations.   

Axiom (13)  zx,y({x,y}z  {x}z  R 
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The following axiom schemas provide for substitution within and identification of relations.   

 

Axiom (14)  xR(x)  R(yQ) 

Axiom (15)  x(R  Q)  (xR  xQ) 

Axiom (16)  (x,y)R(x,y)  (p,q)R(p,q))  

 

Axiom Schema (14) asserts that if R(x) is true for all x, then yQ is the name of one of those 

relations.   

Axiom Schema (15) asserts that if relations R and Q are equivalent for all x, then xR and ixQ are 

names of the same relation.  This is a critical axiom for determining morphisms.   

Axiom Schema (16) allows for change of variables.    
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ATIS Calculus 

In the preceding sections, the formal logic has been established.   

Now, the calculus must be developed that begins to provide the substance for the desired theories.  

These theories are descriptive of what will be called General Systems.  Therefore, the first axiom will 

introduce the characteristics of a General System.   

The development of the calculus that results in the empirical theory is dependent upon the concept of 

an Options Set.  The Options Set is that listing of Properties and Associated Axioms that will result in a 

system-descriptive theory that will be analyzed pursuant to the derived formal logic herein established.  The 

specific Options Set herein developed is the ATIS Options Set.  This set will consist of the derived list of 

properties, and all General System axioms that are associated with those properties.   

An analysis of a system is obtained by determining those properties that are descriptive of the 

system.  Those properties are then identified in the ATIS Options Set.   Following identification of these 

properties, the Associated Axioms are then selected.  Associated Axioms are those in which one or more of 

the selected properties occur.  With the selection of these axioms, an analysis of the system is possible using 

the Predicate and Relation Calculi herein developed.   

It is also intended that a topological analysis will eventually be possible either by the direct use of 

operations taken from mathematical topology or a derivation thereof.  Such an analysis, along with other 

analytic techniques, is beyond the scope of this report.   

The following axiom asserts that if we have a set of a specific system defined by components and a 

set of that system defined by relations of those components, then we have a General System that can be 

characterized by ATIS.  Axiom Schema (17) is the General System axiom scheme.   

Axiom (17)  ŵP(w)  Sx  ŷP(y)  S  G(Sx,S)  

The affect relations, S, determine the properties, P, of an Intentional General System.    

 

Axiom (18) asserts that if we have an Intentional General System, IG, then for every property, P, 

there exists a property qualifier that determines the class ŵP(w).   

Axiom (18)  IG  P(w)ŵ(ŵP(w))   

 

The following axiom asserts that if we have a property class then there is a morphism that can be 

defined between that class and another property class.   

Axiom (19)  ŵP(w)  XŷP(y)(X(ŵP(w)  ŷP(y))) 
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ATIS Options Set Defined 

The ATIS Options Set, , is defined by the set of system properties, P, and system Affect Relations, 

A.   

 =df ŵi=1:nPi(wi) ⋃ ŷj=1:nAi(yj)    



 

 

 

 

 

 



ATIS Theory Development:  Logics, Models & Theories … Types of Systems … Research Methodologies      Page 64 of 99 

 

 
© Copyright 1996 to 2015 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

 

Definitions of Logical Operations in Proofs 

 
In addition to the logical schemas presented above, some proofs of theorems may require an 

application of the definition of the logical operations.  An example is given below.   

The following operations were previously defined:   

Definition. P  Q  =
 df

 (PQ) 

Definition. P  Q  =
 df

 (PQ) 

Definition. P  Q  =
 df

 (P  Q)  (Q  P)  ..  (PQ) (QP) 

 

The following theorem demonstrates an application of the use of definitions in the proof of a 

theorem.   

Theorem.   ⊢
 HO
 c  

F
 c  

S
 c      “If hierarchical order is constant or increasing, 

        or if flexibility is constant or decreasing, then 

        strongness is constant or decreasing.”    

      

Proof:  1.  
S
  

HO
     Axiom 55; i.e., “If strongness increases, then  

         hierarchical order decreases.” 

  2.  
S
  

F
      Axiom 56; i.e., “If strongness increases, then  

         flexibility increases.” 

  3.  
S
  

HO
  

F
     Logical Schema 4 

  4.  (
 HO
  

F
)  

 S
  Logical Schema 5 

  5.  
HO
 c  

F
 c  

 S
  Definition of ‘’  

  6.  
HO
 c  

F
 c  

S
 c    Logical Equivalence of ‘’ 

  7.  ⊢
 HO
 c  

F
 c  

S
 c     Q.E.D.32 

                                                 
32 “Q.E.D.” comes from the Latin quod erat demonstrandum, “that which was to be demonstrated”; or, in 

mathematics, “that which was to be proved.”   
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Axiom 181 is a Theorem 

With the number of axioms presented for the theory, it is possible that some of the axioms are in fact 

theorems; that is, they are derivable from the other axioms.  Such is the case with Axiom 181.   

 

 Axiom 181 states: Z  X +c
 C
.     

That is:  “If size increases and complexity growth is constant, then centrality decreases.”  

 

This statement will now be proved as a theorem.   

 

Theorem 181.  ⊢ Z   X +c
 C
  

 

Proof: 

1. Z   X +c Tp   Axiom 194; i.e., “If size increases and complexity 

       growth is constant, then toput increases.”  

  2. Tp   
C
   Axiom 90; i.e., “If toput increases, then centrality 

         decreases.” 

  3. Z   X +c
 C
  Logical Schema 0 (Transitive Property)  

        on Steps 1 and 2 

  4. ⊢ Z   X +c
 C
  Q.E.D. 
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Inconsistent Axioms 

Certain axioms of the SIGGS Theory have or will be found to be inconsistent.  That is, they 

are inconsistent when combined within the same theory.  This does not mean that either axiom is 

“wrong” or “false” or “not-valid.”  It simply means that they cannot be taken together in the same 

theory.  No determination will be made at this time as to which axiom is more appropriate for the 

theory.  It may simply be that several theories will be developed from the SIGGS Theory axioms.   

The following pairs of axioms have been found to be inconsistent and will be so proved 

below:  Axioms 55 and 112, Axioms 90 and 106, and Axioms 175 and 183.   

 

Theorem 55-112. ⊢ ~(
S


HO
 :: 

S
  

HO
 c 

R
) 

   That is:  “⊢ ~(Axiom 55 :: Axiom 112)” 

Proof:   

1. 
S


HO
    Axiom 55; i.e., “If strongness increases, then 

       hierarchical order decreases.” 

2. 
S
⊢ 

HO
    Deduction Theorem on 1 

3. 
S
     Assumption from 2 

4. 
HO
     Modus Ponens on 3 and 1 

5. 
S
  

HO
 c 

R
   Axiom 112; i.e., “If strongness increases and  

        hierarchical order is constant, then    

      regulation decreases.” 

6. 
S
  

HO
 c 

R
   Logical Equivalence 3 on 5 

7. 
S
 ⊢ 

HO
 c 

R
   Deduction Theorem on 6 

8. 
S
, 

HO
 c ⊢ 

R
   Deduction Theorem on 7 

9. 
HO
 c     Assumption from 8 

10. 
HO
 

 HO
 c    From Steps 4 and 9 

11. 
HO
 

 HO
 c    Contradiction of ‘’ 

12. ⊢ ~(
S


HO
 :: 

S
  

HO
 c 

R
)  Q.E.D. 
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Theorem 90-106. ⊢ ~(Tp 
 C
::

C
  

S
  Tp) 

   That is:  “⊢ ~(Axiom 90 :: Axiom 106)” 

Proof:   

1. Tp 
 C
    Axiom 90; i.e., “If toput increases, then  

       centrality decreases.” 

2. Tp ⊢
 C
    Deduction Theorem on 1 

3. Tp       Assumption from 2 

4.  
C
     Modus Ponens on 3 and 1 

5.  
C
  

S
 Tp   Axiom 106; i.e., “If complete connectivity  

       increases or strongness increases, then  

       toput increases.” 

6.  
C
 Tp    Assumption of Case on 5 

7.  
C
 ⊢Tp    Deduction Theorem on 6 

8.  
C
     Assumption from 7 

9. 
C
  

C
    From Steps 4 and 8 

10. 
C
  

C
     Contradiction of ‘’ 

11. ⊢  ~(Tp 
 C
::

C
  

S
  Tp)  Q.E.D.  
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Theorem 175-183. ⊢  ~(X  Z  
D
 :: Z  X  

 D
) 

   That is:  “⊢  ~(Axiom 175 :: Axiom 183)” 

Proof:   

1. X   Z   
D
  Axiom 175; i.e., “If complexity degeneration increases,  

      then size degeneration increases or  

      disconnectivity increases.” 

2. X  ⊢  Z   
D
  Deduction Theorem on 1 

3. X     Assumption from 2 

4. Z   
D
   Modus Ponens on 3 and 1 

5. 
D
     Assumption of Case on 4 

6. Z   X  
 D
   Axiom 183; i.e., “If size decreases and complexity  

      degeneration increases, then disconnectivity  

      decreases.” 

7. Z   X  ⊢ 
 D
    Deduction Theorem on 4 

8. Z   X      Assumption from 5 

9. 
D
      Modus Ponens on 6 and 4 

10. 
D
  

D
     Steps 5 and 9 

11. 
D
  

D
     Contradiction of ‘’ 

12. ⊢  ~(X  Z   
D
 :: Z   X  

 D
) Q.E.D. 
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Hypothesis-Based vs. Axiom-Based Research Methodologies 

The Hypothesis and Axiom Distinction  

Social scientists rely on hypothesis-based research and attempt to use that methodology to develop 

social theories.  To understand the fallacy of such an approach, the distinction between hypothesis and 

axiom must be understood.   

In the social sciences, axioms and hypotheses are frequently considered to have the same meaning.  

However, in theory development, these two terms are distinctly different.   

In fact, the distinctions between axiom and hypothesis provide strong confirmation why there has 

been no comprehensive theory developed for the social sciences, and why hypothesis-driven research cannot 

provide a basis for any such theory development.   

Essentially, the distinction is that a hypothesis is a conjecture about an observation or a perceived 

empirical event that is stated as a conclusion of fact that is to be validated by experimental testing.  An 

axiom, on the other hand, is a statement that relates properties of a theory, or the components (objects) of a 

theory to its properties.  An axiom is theory-based; a hypothesis is empirical-based.   

When a hypothesis is stated, there is no intent that it is meant to develop theory—it is meant to be 

validated as an assertion of fact.  Social scientists then attempt, after-the-fact to utilize the results of the 

testing of the hypothesis to somehow develop theory.  However, since the validation of the hypothesis is 

nothing more than that, there is nothing by which the hypothesis can be related to other properties or 

hypotheses that could result in theory development.   

Very simply, hypotheses are not designed to develop theory.   

 

The Writing of a Hypothesis as Opposed to an Axiom 

Consider the following statement:   

HYPOTHESIS:  Student choice and independence are the primary motivators for learning. 

As stated, this is a hypothesis.  It is stated as a conclusion of fact that is to be validated.  If it is 

validated, it provides no relevant relation to any other statements that might be part of a theory and there are 

no leading assertions from which additional theory statements can be derived.  This is so even if the 

statement is framed as an implication as follows:   

HYPOTHESIS:  If student choice and independence are related to learning, then establishing student choice and independence in 

the classroom will confirm them as the primary motivators for learning.   

Now consider the following statement:  



ATIS Theory Development:  Logics, Models & Theories … Types of Systems … Research Methodologies      Page 70 of 99 

 

 
© Copyright 1996 to 2015 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

AXIOM:  Students are independent systems (where independent system is a property defined by a systems theory). 

This statement is an axiom as it relates the components of a theory, students, to a property of the 

theory, independent system.  It is not a conclusion of fact, as there is nothing to validate, but a theoretical 

construct, an axiom for a theory, that informs us about a theory property by which students are identified—

that is, it is assumed that students are independent systems.  Further, this statement is neither “true” nor 

“false”—it is simply an assertion that is assumed to be valid.  Further, there is no amount of testing that can 

ever confirm the validity of this assertion since there is nothing to validate.  Whether or not this axiom is 

valid is not the issue, since it is assumed that it is.  The issue is whether or not the theorems (or logically-

derived, theory-based hypotheses) that are deductively obtained from it and other axioms of the theory are 

validated.  Validation of theorems (logically-derived, theory-based hypotheses) derived from this axiom 

provides the on-going “preponderance of evidence” that the axiom is a warranted valid assertion within the 

theory.   

An additional point needs to be made about this axiom.  It may be contended, as is often done in the 

social sciences, that if it is found that there is a student who is not an “independent system,” then the axiom 

is demonstrated to be “false” and the entire theory must be discarded.  To the contrary, such an approach is 

applicable to hypotheses but not to axioms.  If an empirical example is found that refutes a hypothesis, then 

the research is complete and the hypothesis is rejected.  However, an axiom is a basic assumption, not a 

hypothesis.  If a student is found not to be an “independent system,” as independence is defined within the 

theory, then that student simply is not considered with respect to the theory—the criteria for the basic 

assumption has not been met.  A comparable example from geometry would be where an artist considers 

parallel lines to meet at “infinity” whereas in Euclidean geometry they do not.  Very simply, the one 

geometry does not refute the other; they are simply two different geometries.  If a student is not an 

“independent system,” then that student is not part of the class of students that are being analyzed with 

respect to the theory that contains the above axiom.  When it is asserted that there is nothing to validate with 

respect to the axiom that is exactly what is meant—the axiom is assumed to be valid and all analyses 

proceed upon that assumption.  If the empirical evidence demonstrates that a particular event does not meet 

the criteria for the axiom, then all that means is that that event is not analyzed with respect to the theory 

being considered.  This should be a welcome outcome for all educologists who believe that students should 

be treated “individually”—they in fact are members of distinct systems that require distinct theories!  [Such 

distinct theories are provided for by the Options Set of ATIS (Axiomatic Theory of Intentional Systems).]   

Now, if as a result of the definition of independent system along with other system properties and 

axioms it is determined that “individual choice and independence are motivators for learning,” then it is as a 

result of some theory derivation, and not an a priori assertion of fact.  Then, through various empirical 

analyses it can be determined whether or not in fact “choice and independence” are the “primary motivators 

for learning.”  However, even the validation of this conclusion, should it actually be derived, will depend on 

all of the assumptions and qualifications it took to arrive at this conclusion.  Tests are not set up at the 

discretion and “creativity” of a researcher, but are determined by the parameters of the theory.   

When designing tests for hypotheses, the burden is on the researcher to determine if all parameters 

have been accounted for; hence, the frequent occurrences where two evaluations of the “same” hypothesis 

results in different outcomes.  With an axiomatic theory that results in the derivation of a theorem, it is the 

axioms and theorems that dictate the parameters of the experiment.  Have all assumptions of the theory been 

accounted for in the design of the experiment?    
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The distinction between axiom and hypothesis is seen to be quite profound for theory development, 

and it is important to keep clear their differences.   

 

Examples of Hypotheses in the Social Sciences and  

Converting Them to Axioms 
 

Cognitive Load Theory 

To see the distinction between hypotheses and axioms and how the latter may lead to theory, 

consider the following hypothesis taken from the social sciences as propounded by Tracey Clarke, Paul 

Ayres, and John Sweller in “The Impact of Sequencing and Prior Knowledge on Learning Mathematics 

through Spreadsheet Applications” (Clarke, 2005):   

HYPOTHESIS:  Students with a low-level knowledge of spreadsheets learn mathematics more effectively if the relevant 

spreadsheet skills are learned prior to attempting the mathematical tasks.   

The results of testing supported this hypothesis.  For our purposes the greater concern is how this 

hypothesis was developed and whether it may lead to theory development.  The rationale for the hypothesis 

is stated by the researchers as follows:   

According to cognitive load theory, instruction needs to be designed in a manner that facilitates the 

acquisition of knowledge in long-term memory while reducing unnecessary demands on working memory.  

When technology is used to deliver instruction, the sequence in which students learn to use the technology and 

learn the relevant subject matter may have cognitive load implications, and should interact with their prior 

knowledge levels.  An experiment, using spreadsheets to assist student learning of mathematics, indicated that 

for students with little knowledge of spreadsheets, sequential instruction on spreadsheets followed by 

mathematics instruction was superior to a concurrent presentation.  These results are explained in terms of 

cognitive load theory.  (p. 15) 

The process by which this hypothesis was developed is a retroductive process; that is, cognitive load 

theory was used as a model to develop assertions about learning mathematics.  However, there is confusion 

concerning this process since it is claimed:  “These results are explained in terms of cognitive load theory” 

(see last sentence from above quotation).   

If in fact the results “are explained in terms of cognitive load theory,” and Cognitive Load Theory 

(CLT) is in fact a theory, then this hypothesis is a theorem of CLT and should be deductively obtained from 

that theory as a theorem to be validated; or, possibly, it is an interpretation of CLT and was derived as an 

abductive process—that is CLT was used as a model of mathematics learning and the content of the desired 

hypothesis was substituted for the content of CLT.    

However, it is not claimed that either approach was used, so the question moves to whether or not 

CLT is actually a theory, or is it a hypothesis that has been validated through various tests?  If it is a theory, 

then we may be able to determine in what sense it is claimed that CLT “explains” the hypothesis.   
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First, the use of the term theory in the context of CLT indicates that it is not either a formal theory or 

an axiomatic theory.  If it is a theory, then it appears to be a descriptive theory.  But, even as a descriptive 

theory, it appears to be very limited in scope and functions more like a hypothesis since deductive 

derivations are difficult to obtain.  But, let us look at this more carefully.   

Cognitive Load Theory, developed by J. Sweller, is founded on the following four principles:   

 Working memory, or short-term memory, has a maximum capacity identified as maximum cognitive load 

 Information that exceeds maximum cognitive load is lost  

 Learning requires that cognitive load remain below some value that is less than maximum cognitive load 

 Long-term memory is consciously processed through working memory  

NOTE:  The “theory” and “axioms” presented below are for the sole purpose of demonstrating a 

possible construction of an axiomatic theory and in no way is to be construed as a replacement for the 

Cognitive Load Theory developed by J. Sweller.  In fact, it is only as a result of the careful development of 

CLT that it is possible to derive an axiomatic theory therefrom.  In general, it is very difficult to ascertain 

axioms from a descriptive theory, since they frequently are so vaguely worded that explicit statements of 

their assumptions are difficult or impossible to determine.  Fortunately, CLT is not such a theory.   

Provided below is a preliminary development for a Theory of Memory and Learning that is 

retroductively-derived from CLT.  Briefly presented are the primitive terms, initial axioms, definitions and a 

few theorems of the theory.   

 

Theory of Memory and Learning 
 

PRIMITIVE TERMS:  Cognition, memory, working memory, consciously, cognitive load, mental structures, patterns, and 

languages   

AXIOM 1:  Working memory is that memory which is used to consciously process information.   

AXIOM 2:  Working memory has a maximum capacity identified as maximum cognitive load.   

AXIOM 3:  Working memory that is maintained below maximum cognitive load results in short-term memory 

acquisition.   

AXIOM 4:  Long-term memory is consciously processed through working memory.   

AXIOM 5:  Cognition is determined by a sequence of recognizable patterns or languages.   

AXIOM 6:  Long-term memory is short-term memory that is processed and related to an existing or newly developed 

cognitive schema, or structure.   

DEFINITION 1:  ‘Cognitive schemas’ are memory constructs that map short-term memory cognition onto devised mental 

structures that interpret immediate cognition.   

DEFINITION 2:  ‘Learning’ is defined as that processed cognitive load that results in the acquisition of short-term memory.   
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As a result of these axioms and definitions, we obtain the following theorems:   

THEOREM 1:  Information that exceeds maximum cognitive load is not cognizable.   

PROOF OF THEOREM 1:   

 Working memory has a maximum capacity identified as maximum cognitive load.  (Axiom 2.)   

 That which exceeds maximum capacity is not cognizable.  (Definition of ‘maximum’.)   

Another way of stating Theorem 1 is:   

THEOREM 1:  Information that exceeds maximum cognitive load is lost.   

This statement of the theorem is the second statement of the four principles cited above for CLT.    

 

THEOREM 2:  For learning to occur, cognitive load must remain below maximum cognitive load.   

PROOF OF THEOREM 2:   

 Cognitive load that exceeds maximum cognitive load is not cognizable and, therefore, not processed.  (Theorem 1.) 

 Working memory that is maintained below maximum cognitive load results in short-term memory acquisition.  

(Axiom 2.)   

 Short-term memory acquisition results in learning.  (Definition of ‘learning’.)   

 

Now the problem is to determine if the hypothesis relating to learning mathematics considered 

previously can be derived from this theory.   

Stating the hypothesis again:   

HYPOTHESIS / THEOREM 3:  Students with a low-level knowledge of spreadsheets learn mathematics more effectively if the 

relevant spreadsheet skills are learned prior to attempting the mathematical tasks.   

PROOF OF THEOREM 3:   

 Students do not have cognitive schemas relating to spreadsheets.  (Assumption of Theorem 3.)   

 Students do not have cognitive schemas relating to mathematics.  (Assumption of Theorem 3.)   

 Lack of cognitive schemas precludes long-term memory.  (Axiom 6.)   

 Spreadsheet cognition precedes mathematics cognition.  (By Axiom 5 and assumption of Theorem 3, the spreadsheet 

structure provides the basic “language” by which mathematics is learned.)   

 A spreadsheet cognitive schema must be developed for long-term memory to take place.  (Axiom 6.)   

 Therefore, relevant spreadsheet skills must be learned prior to the learning of mathematical tasks.  (Conclusion of 

Theorem 3.) 
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The importance of this axiomatic development is that now a much stronger claim can be made 

concerning Theorem 3.  Whereas the initial researchers could only claim:  “These results are explained in 

terms of cognitive load theory,” it can now be claimed more strongly:  “These results are deductively 

obtained from the Theory of Memory and Learning and are validated by empirical testing.”   

But what is the far-reaching effect of this second approach?  By validating Theorem 3 the 

researchers have not only validated their “hypothesis” (theorem) but have now provided support for the 

theory.  This validation has now initiated a process that, hopefully, will eventually provide a “preponderance 

of evidence” that the theory consistently provides valid outcomes.  By framing CLT as an axiomatic theory, 

every validation of a theorem (or logically-derived, theory-based hypothesis if you want) validates not only 

the theorem but the theory.  Eventually, we will be able to obtain theorems deductively from the theory and 

proceed with confidence that the outcome is accurate, with or without further validation.  This is very 

important, since otherwise every hypothesis must be continually validated in every new setting, in every 

new school, in every new learning environment.   

Whereas the hypothesis has been validated for this one group of students learning mathematics from 

a spreadsheet, what can we say if instead of a spreadsheet, new computer software is utilized?  Will they 

have to learn the software before learning the mathematics?  At first glance, the answer should be “obvious” 

even without any testing.  But, for the sake of making a point, the point is also “obvious”—we have already 

provided the proof that they would have to learn the software and we do not have to, once again, conduct 

testing to validate the theorem.   

But now, what about results that are not so obvious?   

 

 

Theory of Memory and Learning—Applications 

Theorem 3 provided content that is not stated in the theory axioms.  Applications of this theory are 

the result of the logical process of abduction; that is, the theory content is determined independent of the 

theory and substituted for the theoretical constructs.  For example, “working memory” of the theory is 

replaced by “spreadsheet” and “mathematics” by the specific application.  Additional theory applications 

can be obtained by interpreting various cognitive schemas.   

For a non-obvious theory outcome, consider the following schemas that have been established as 

part of long-term memory:   

(1) Learned behavior described as the schema “assertive”; and  

(2) Learned behavior described as the schema “attention-to-detail.”   
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When students learn to keyboard it is frequently asserted that in order to improve speed and accuracy 

they must practice keyboarding.  However, if that were accurate, then anyone who has been keyboarding for 

many years should be doing so at approximately 60 words-per-minute with great accuracy—whereas this is 

not the case.  There must be more to developing speed and accuracy than practicing keyboarding.  Here it is 

noted that empirical observation refuted the prevailing hypothesis.  The alternative was then not derived 

from the empirical observation, but from recognition that the Theory of Memory and Learning should apply 

to this empirical event—a retroductive process.  From the Theory of Memory and Learning it is determined 

that these students have developed certain cognitive schemas defined as assertive and attention-to-detail 

that are independent of content.   

As a result of these cognitive schemas and the process of abduction by which theory content is 

determined, the following theorem is obtained:   

THEOREM 4:  Keyboarding speed can be improved by any off-task activity that increases one’s assertiveness; and keyboarding 

accuracy can be improved by any off-task activity that increases one’s attention-to-detail.   

Theorem 4 is a direct result of Axiom 6 and Axiom 5.  Theorem 4 is a non-obvious result of the 

Theory of Memory and Learning that was derived from Cognitive Load Theory.  While there is anecdotal 

evidence that Theorem 4 is valid, actual validation or refutation of Theorem 4 is left to those who are more 

skilled at constructing appropriate tests.  Whether Theorem 4 is found to be valid or not, the efficacy of an 

axiomatic theory has been demonstrated as being one that results in non-obvious conclusions.  And, as seen 

here, an axiomatic theory does not have to be formal, although the formalization of this theory may result in 

conclusions that are even more unexpected.   

 

The next step would be to make the theory more comprehensive.  Several theories may be related to 

CLT such as the Information Processing Theory by G. Miller (Miller, 1956), Human Memory Theory by A.D. 

Baddeley, Cognitive Principles of Multimedia Learning by R. Moreno and R.E. Mayer (Moreno, 1999), 

Parallel Instruction Theory by R. Min (Min, 1992), Anchored Instruction by J.D. Bransford (Bransford, 1990), and 

Social Development Theory by J.V. Wertsch (Wertsch, 1985), among others.  All of the relevant theories could 

be brought under one theory that provides the first principles from which all others are derived.  Then, all 

validations further not only the specific research but provide greater confidence in the theory that is founded 

on the first principles.  Such unification would provide a basis by which the unexpected may actually be 

determined rather than describing that which is already recognized.    

Once again, we have a challenge for Learning Theorists—devise the umbrella theory under which all 

of the above cited theories can be brought by providing the first principles, basic assumptions upon which 

all theories rely.   
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Instruction Theory 

Another example for converting a descriptive theory to an axiomatic theory comes from M. David 

Merrill, “First Principles of Instruction”33.   

Merrill presents five hypotheses that he refers to as first principles of learning and asserts a premise 

that these principles “are necessary for effective and efficient instruction”34.  Further:   

If this premise is true, there will be a decrement in learning and performance when a given 

instructional program or practice violates or fails to implement one or more of these first principles.35   

He continues:   

These five first principles stated in their most concise form are as follows:   

1. Learning is promoted when learners are engaged in solving real-world problems.   

2. Learning is promoted when existing knowledge is activated as a foundation for new knowledge.   

3. Learning is promoted when new knowledge is demonstrated to the learner.   

4. Learning is promoted when new knowledge is applied by the learner.   

5. Learning is promoted when new knowledge is integrated into the learner’s world.   

These first principles are already well-stated as axioms with but minor modifications.  In fact, he 

also has already provided corollaries for these hypotheses.  The conversion to axioms is accomplished as 

follows:   

1. If students are engaged in solving real-world problems, then student learning will increase.   

2. If a student uses existing knowledge when learning new knowledge, then student learning will increase.   

3. If new knowledge is demonstrated for the student, then student learning will increase.   

4. If a student applies new knowledge, then student learning will increase.   

5. If a student integrates new knowledge with existing student knowledge, then student learning will increase.   

Whereas these first principles are easily converted to the form of axioms, these axioms do not 

provide a basis for a theory.  The reason is that they all have the same conclusion, thus not providing any 

means to relate the axioms.  What this then tells us is that these axioms are actually prescriptions for 

learning that have been derived from a more robust theory—a learning theory.  The antecedents of the 

implications provide the prescriptions for learning as follows:   

 Solve real-world problems 

 Use existing knowledge 

 Demonstrate new knowledge 

 Apply new knowledge 

 Integrate new knowledge with existing knowledge 

                                                 
33 Merrill, M. David, (2002).  “First Principles of Instruction,” ETR&D, Vol. 50, No. 3, pp. 43-59, ISSN 1042-1629. 
34 Ibid., p. 44.   
35 Ibid. 
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As stated, however, these prescriptions for learning but describe events or empirical observations 

that can be tested, rather than the foundation for a theory.  Rather than an Instruction Theory, we have an 

Instruction Prescription that may be of great value to teachers.   

If these prescriptions are to be derived from theory, then some or all of these antecedents would have 

to be the conclusions of other axioms.  In fact, these axioms would probably be theorems within the more 

robust theory.  This then reverts back to the challenge presented earlier:   

Is there a Learning Theorist who can develop the basic principles, the first principles in fact, that will 

encompass not only the other learning hypotheses cited, but now these principles that seem to have strong 

support for being valid guidelines that will improve students’ learning?    

Now we can return to our earlier questions.   

 

What is a ‘Theory Model’?   

‘Theory model’ will be explicated below in the section on Theory Development.   
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What is an ‘Intentional System’? 

What is meant by ‘Intentional’? 

‘Intentional’ is used here to describe a person or group of people who have specific goals 

which their actions are designed to achieve.   

For example, an education system has specific goals, the education of children, that it is 

designed to achieve.   

A military system has specific goals, the protection of a society, that it is designed to achieve.   

A person has specific work-goals that he/she “intend” to achieve.   

These are all examples of a person or group of people who are intentional; that is, they are 

“goal-oriented”.   

 

What is a ‘System’? 

‘System’ is the connection of objects; for example, people, that are considered to be 

functioning as a unit.   

Each of the above three examples are systems—an education system, a military system, and 

an individual person-system.   

Formally, ‘System’, S, is defined as the following ordered-pair:   

S =Df (SO,SR), where SO is the object-set and SR is the relation-set.   

However, this definition of ‘system’ will be refined later in this study.   

 

We also now see that there are additional terms that have been added that we will have to understand 

if we are to proceed in a clear manner that avoids confusion; for example, ‘functioning’ and ‘unit’.  

However, such an endeavor will result in an unending sequence of terms or will result in a circularity of our 

definitions.   

As a result, it will be necessary to start with certain undefined terms that it must be presumed all 

readers of this study will comprehend.  And, it must also be presumed that all readers of this study will have 

a certain basic background in order to fully comprehend this study.   

 



ATIS Theory Development:  Logics, Models & Theories … Types of Systems … Research Methodologies      Page 79 of 99 

 

 
© Copyright 1996 to 2015 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

What Basic Background is Required to Understand this Study? 

It is presumed that all readers will be able to follow the development of the basic logic that is used; 

e.g., the Sentential Calculus and Predicate Calculus, among others.   

There are numerous textbooks on these subjects where the basic knowledge can be acquired, 

although, to a certain extent, a development of the logics will also be included in this study so that all 

readers will be informed of what is required.   

It is not presumed that a reader has a knowledge of axiomatic theories, since that is one goal of this 

study—to discuss the nature of and value of axiomatic theories, to provide the rationale for axiomatic 

theories and why they are necessary for any definitive empirical study where individual-predictive behavior 

is desired.  While today, practically all studies in the social sciences, if not all, rely on statistical-based 

analyses, such analyses are only, and can only be, group-predictive.  If individually-predictive outcomes are 

desired, then an axiomatic-based analysis must be utilized.   

Further, it is presumed that any serious reader will obtain and read the seminal work by Elizabeth 

Steiner:  Methodology of Theory Building.36   

Also, the work on APT developed by Theodore Frick, “Analysis of Patterns in Time (APT)”,37 will 

be required as it provides part of the logical basis for ATIS:   

 

What Undefined Terms are Required? 

The required undefined terms will be presented as necessary during this study.  For now, we start 

with the following undefined terms:   

‘Intentional’, ‘Object’ (which may also be referred to as ‘Element’), and ‘Empirical’. 

Therefore, what is ATIS? 

As previously stated:  

ATIS is an axiomatic formal empirical theory designed specifically for intentional systems.   

ATIS is an empirical theory that is designed so that selected parameters can be evaluated to determine 

projected outcomes in view of these parameters.   

 

                                                 
36 Steiner, Elizabeth, (1988), Methodology of Theory Building, Educology Research Associates, Sydney, NSW, Australia.   
37 Frick, T. (1990).  “Analysis of Patterns in Time (APT): A Method of Recording and Quantifying Temporal Relations in 

Education.”  American Educational Research Journal, 27(1). 
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Applications of ATIS 

One of the main features of ATIS is that it can be used as the basic logic for computer simulations; for 

example, SimEd, SimTIE, as designed and developed by Theodore W. Frick, Associate Professor and Web 

Designer, Indiana University, and other such programs.  One program, in particular, that will utilize ATIS is 

SimTIE (Simulated Totally-Integrated Education).  Thus, SimTIE will have an axiomatic empirical theory 

for its logic which will provide empirical-based predictive outcomes.  That is the advantage of ATIS.   

The outcomes of computer simulations, or computer models, are dependent on the program designed 

to analyze the selected input parameters.  There are essentially two types of programs that can be used for 

computer models—Scenario-Based and Logic-Based.   Most often, and especially for the “Sim” models, a 

Scenario-Based Model is used.  Such models are dependent on the imagination of the designer and 

comprehensiveness of the data included in the program.   

 

Scenario-Based Models 

Scenario-Based Models are defined as programs that provide scripts to determine outcomes.  The 

scripts can be narrative or quantitative.   

Narrative scripts characterize the qualitative parameters of a system; that is, the social, 

philosophical, and individual parameters and their uncertainty of future outcomes.  That is, the 

predictiveness of the model is pre-determined by the programmer.   

Quantitative scripts define the scientific facts, known or credible data, and quantitative 

models that are used to determine future outcomes.  Again, the predictiveness of the model is pre-

determined by the programmer in terms of what scientific facts are included in the model.   

However, regardless of the type of script, their content is closed; that is, there are a limited number 

of possible outcomes, and the scripts predetermine the outcomes.  Ted Friedman recognizes this closed 

characteristic of Scenario-Based Models in his report on SimCity, “Semiotics of SimCity,”38 when he states:   

Of course, however much "freedom" computer game designers grant players, any simulation will be 

rooted in a set of baseline assumptions.  SimCity has been criticized from both the left and right for 

its economic model.  It assumes that low taxes will encourage growth while high taxes will hasten 

recessions.  It discourages nuclear power, while rewarding investment in mass transit.  And most 

fundamentally, it rests on the empiricist, technophilic fantasy that the complex dynamics of city 

development can be abstracted, quantified, simulated, and micromanaged.   

 

                                                 
38 “Semiotics of SimCity,” First Monday, Peer-Reviewed Journal on the Internet, 

http://www.firstmonday.dk/issues/issue4_4/friedman/.   
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Logic-Based Models  

On the other hand, Logic-Based Models are not dependent on analyses of predetermined values, but 

on the logic of a theory that has been shown to be valid for the target empirical system; for example, an 

education system.  The theory describes the empirical system in terms of its affect relations, properties, and 

axioms.  The theory logic is then used to project outcomes founded on the theory with respect to input 

parameters.  The value of the Logic-Based Model is then determined by the skill of the designer to provide 

an appropriate and accurate program that corresponds to the input.  Designed properly, a Logic-Based 

Model should be able to provide projected outcomes that are open-ended.    

Unlike Scenario-Based Models that are closed due to the limited number of scripts, Logic-Based 

Models have an infinite number of outcomes.   

This is especially so with the logic designed for the ATIS Model.  Due to the number of axioms 

involved, over 200, there are initially tens-of-thousands of theorems that can be obtained.  However, the 

SCTs (Structural Construction Theorems) provide for an open-ended and infinite number of additional 

theorems.  The reason is that new affect relations, properties, or system-descriptive parameters can be 

inserted into the SCTs that will automatically generate thousands of additional theorems.  The Logic-Based 

Model is not dependent on what has been initially programmed for the logic, but what is subsequently 

programmed as a result of new system parameters.   

The strength of a Logic-Based Model will be seen in what follows, and additional analyses relating 

to the two types of models will be discussed.   

 

Theory Development 

Elizabeth Steiner has explicated the concepts of ‘theory’ and ‘model’ in great detail.  She has also 

explicated the relation between ‘theory’ and ‘model’.  We will start with her analyses.39   

It is commonly believed that developing theory is derived from one of two logical processes—

induction or deduction.  Theory development, however, is not derived from either.   

Induction brings together many observations from which it is claimed a generalization, or pattern, 

can be obtained.  Such, however, is not the case.   

 

                                                 
39 See Methodology of Theory Building, Elizabeth Steiner, Indiana University, Educology Research Associates, Sydney, 1988.  

This text is an extension of her earlier work that includes the following:  The Model in Theorizing and Research, Elizabeth Steiner 

Maccia, Educational Theory Center, The Ohio State University, May, 1965; Sources of Empirical Theory, Elizabeth Steiner 

Maccia, The Ohio State University, May, 1964; Theory Construction and Models, Elizabeth Steiner Maccia, The Ohio State 

University, May, 1964; The Conceptions of Model in Educational Theorizing, Elizabeth Steiner Maccia, Center for the 

Construction of Theory in Education, The Ohio State University, August, 1962; Models and the Meaning of ‘Retroduction’, 

Elizabeth Steiner Maccia, Foundations Division, The Ohio State University, June, 1962; and The Way of Educational Theorizing 

Through Models, Elizabeth Steiner Maccia and George S. Maccia, Foundations Division, The Ohio State University, June, 1962.   
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It is clear that in order to obtain the pattern, the observer must be able to recognize the pattern, and 

therefore has brought the generalization to the data.  The data does not induce the generalization, the 

observer does.   

This is a mode of inquiry, but it is not theorizing.  Today induction provides the basis for the data-

mining technologies that are widely used to develop structure from unstructured data.  The structuring of 

unstructured data is not theorizing.  Induction is a means of evaluating data so as to recognize and develop 

patterns.  The patterns, when logically organized, are the theory that the data confirms by induction.   

Deduction is a means of explicating existing theory; that is, “to clarify and complete theory” [Steiner, 

Models and the Meaning of ‘Retroduction].  The theory presents the postulates or axioms upon which the theory is 

based.  Deduction then provides the logical process by which the theory is made explicit through its 

deductive statements.  Deduction generates conclusions of the theory in the form of theorems or hypotheses 

that are to be evaluated for validity.   

Deduction explicates a theory into statements, and induction evaluates the statements.   

What then is the logical process by which theory is developed?  Retroduction.   

 

Retroduction 

 ‘Retroduction’ is a “moving backward.”  From one perspective we move backward to devise 

another perspective.   

For example, the “Holographic Paradigm” may provide a perspective for education.  Considering 

that a holograph can be generated from any of its facets, it may suggest that a student may learn, not by 

focusing on the subject of concern directly, but by developing coordinated skills in a discipline not normally 

considered as being directly relevant.  But, the “parts” of the divergent discipline may have “facets” that in 

fact produce the entire “hologram” in the subject of concern.  For example, one may learn how to interpret 

historical events by taking acting lessons whereby the skill is developed that allows one to become 

immersed in a period thinking and lifestyle.   

In terms of theory development, one theory that can be used as a model for developing another 

theory is a “devising theory.”   

Retroduction is the process of using one theory as a model to devise another theory.  Therefore:   

(1) Retroduction devises theory,  

(2) Deduction explicates theory, and  

(3) Induction evaluates theory.   
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‘Retroduction’ and ‘Abduction’ Confusion 

There is a prevailing misconception concerning ‘retroduction’ and ‘abduction’.   

Retroduction is normally, if not universally, defined as abduction.  Such a definition is in error.  

First, there is a recognizable distinction between a “taking from,” abduction, and a “moving backward,” 

retroduction.   

It is presumed that Peirce generally defines ‘abduction’ and ‘retroduction’ as the same, although a 

careful reading indicates that he does not.  An analysis of this confusion is worth considering due to its 

almost universal acceptance.   

The ‘retroduction’ and ‘abduction’ confusion seems to have come from the work edited by Charles 

Hartshorne and Paul Weiss, Collected Papers of Charles Sanders Peirce.40  For example, if one goes to the 

index for Volume 1, the reference for ‘retroduction’ is:  “see Abduction.”  The implication is that they are 

the same.  But, when we look at the first reference for ‘abduction’, §65, we find that the two are not the 

same at all.  Peirce writes:   

§10.  KINDS OF REASONING 

65.  There are in science three fundamentally different kinds of reasoning, Deduction (called by 

Aristotle ή or ή), Induction (Aristotle’s and Plato’s έή) and Retroduction (Aristotle’s 

άή), but misunderstood because of corrupt text, and as misunderstood usually translated abduction.  

Besides these three, Analogy (Aristotle’s ) combines the characters of Induction and Retroduction.   

It should be clear that ‘retroduction’ and ‘abduction’ are not the same, and that they have been 

equated only because of “corrupted text.”   

So, what is the distinction between ‘retroduction’ and ‘abduction’?  Consider the following 

examples.   

A direct affect relation and its measure in a behavioral topological space are defined in terms of a 

mathematical vector.  That is, it is recognized that the concept of “vector” is applicable to this behavioral 

theory.  This transition was recognized as a result of affect relations being interpreted as “force fields.”   

Gravitational and electromagnetic force fields are vector fields; fluid velocity vectors, whether in the 

ocean or the atmosphere, are vector fields; and weather pressure gradients are vector fields.  Affect relations 

within a behavioral system are vector fields—they are dynamic.  They exhibit both direction and magnitude.  

They exhibit the change and flow of any other empirical vector field.   

This process of applying an interpretation to the mathematical construct “vector,” is a logical process 

of abduction.  This is not a process of “moving backward,” but a process of “taking from.”  The 

mathematical measure is simply being applied to the content of a behavioral theory.   

 

                                                 
40 Hartshorne, Charles and Paul Weiss, Collected Papers of Charles Sanders Peirce, The Belknap Press of Harvard 

University Press, Cambridge (1960).   
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There is no theory development; there is simply an interpretation of the theory by mathematical 

means.  The mathematical concept of a vector field is utilized as a measure to further explicate the theory.  

The affect relation concept was already in the theory, so it is clear that no theory development was 

accomplished.  Was there a retroduction of the “form” as a single predicate from mathematics?  No.  What 

is being utilized here is simply the definition of a vector field.  The definition of “vector field” is being 

“taken from” mathematics in order to deductively explicate the theory of affect relations.  As Thompson 

remarked following the classification of the SIGGS properties by Frick:  “It was recognized that the 

Structural Properties represented the topology of the theory.”  Such recognition was a deductive process and 

not a retroductive process.  The mathematical vector field theory was not used to devise the SIGGS theory; 

it was used to explicate the SIGGS theory.  (SIGGS:  Set theory, Information theory, Graph theory, General 

Systems theory.)   

This study defines ‘retroduction’ and ‘abduction’ as distinct logical processes, and such that they 

complement the logical process of ‘deduction,’ as follows:   

 Deduction is the logical process by which a conclusion is obtained as the implication of assumptions.   

 Retroduction is the logical process by which a point of view is utilized to devise a conjecture or 

theory.   

 Abduction is the logical process by which a theoretical construct of one theory is utilized to analyze or 

interpret the parameters of another theory.   

These distinctions are formalized below.   

While the Deduction Theorem is a standard part of mathematic logic, this study extends this analysis 

to include the Retroduction Theorem and Abduction Theorem.   

 

Deduction Theorem.  The Deduction Theorem will be stated first.  The applicable logical schema of 

the Sentential Calculus is:   

If P Q, then P ⊢Q; and If P ⊢Q, then P Q .... P ⊢Q .. ⊢P Q 

The Deduction Theorem is a statement of the following implication:    

P ⊢Q .. ⊢P Q  

The statement of the Retroduction Theorem and Abduction Theorem are much more complex.   
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Retroduction Theorem.  We will first take a look at the concept of Retroduction as defined by 

Steiner:   

Given theories A and B, theory A is a devising model for theory B if there is a subset, C, of A such 

that the predicates of B are a representation in substance or form of the predicates of C; whatever is true of C is 

true of B; and not whatever is true of B is true of A.     

Initially it would appear that the following implication holds:  A  B.  However, as Steiner points 

out, “The theory or conjecture that emerges (conclusion) contains more than the theory or point of view 

from which it emerges (premises).  The implication, then, can only hold from the conclusion to the 

premise”; that is, B  A.    It could be argued that the sentential and predicate logic do not hold in this 

instance.  But, if not, we are left with a state of confusion when we are attempting to develop a scientific 

theory that relies on just such logics.  Therefore, it must be assumed that the logic holds and we need to take 

a closer look at just what is required.   

Taking retroduction, as it is conceptually defined; we have that Theory A is a devising model for 

Theory B.  By this is meant that the predicates for Theory B are derived as representations from a subset, C, 

of the predicates of Theory A; that is, P(ĥ)B  P(h)CA.   

But also we have that Theory B results in more than what was in Theory A; since, otherwise, it 

would not be an emendation of Theory A, but simply a replication.  This emendation of Theory A that 

results in more than what is in A is formally defined as:   

P(ĥ)B[P(h)A[~(P(ĥ)B ≟ P(h)A]; 

where ‘’ is read “there exists”, ‘~’ is read “not” or “it is not the case that”, ‘∀’ is read “for 

all”, and ‘≟’ is read “is isostruct to”; and isostructism is a mapping of one entity to another to 

which it is isomorphic or isosubstantive.  (That is, “There exists a Predicate ĥ, an element of 

B, such that, it is not the case that the Predicate ĥ is an element of B is isostruct to Predicate h 

an element of A.)  This meets the final requirement by Steiner.       

Further, it is required that the “predicates of B are a representation in substance or form of the 

predicates of C.”  This requirement is formalized as follows:    

P(h)C ≟ P(ĥ)B =df P(h)C ≅ P(ĥ)B :: P(h)C ≊ P(ĥ)B;  

where, ‘≅’ =df “is isomorphic to” and ‘≊’ =df “is isosubstantive to”; where ‘=df’ is read “is defined as”.    

An isostructism is a mapping of one entity to another to which it is isomorphic or isosubstantive.  An 

isomorphism is a mapping of one entity into another having the same elemental structure, whereby the 

behaviors of the two entities are identically describable by their affect relations.  An isosubstantism is a 

mapping of one entity into another having similar predicate descriptors.   
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Therefore, all of Steiner’s stipulations have been met.  As a result, the Retroduction Theorem is 

formalized as follows:   

P(ĥ)B[P(h)A[~(P(ĥ)B ≟ P(h)A],  

P(h)C  A ≟ P(ĥ)B,  

P(ĥ)B[~(P(ĥ)B ≟ P(h)A)] ⊢  

P(ĥ)B  P(h)C  A. 

 

Proof of Retroduction Theorem:   

For the purposes of this proof, since the conclusion is simply the result of the assumptions by 

definition, all that needs to be argued is that the Predicate Calculus applies to theory B.  To apply, theories 

A and B must be isostruct with respect to C.  By assumption, they are.   All we have to show is that P(ĥ)B 

represents a consistent set of predicates that have been derived from Theory A and that they make B a 

theory. The formal proof is:   

P(h)A      Assumption 

P(ĥ)B  P(h)C  A    Assumption 

P(ĥ)B P(h)A[~(P(ĥ)  P(h))]  Assumption 

P(ĥ)B are derived from P(h)C  A  Assumption 

All we now need to demonstrate is that P(ĥ)B is a consistent theory.   

If {(ŵ,ŷ)B✕B | P(ŵ,ŷ)} ≅ {(w,y)A✕A | P(w,y)}, then all of the consistent logical 

conclusions relating to P(w,y) also apply to P(ŵ,ŷ), by substitution.    

If P(ĥ) ≊ P(h), then any component of A that satisfies P(h) has a corresponding component in B 

that satisfies P(ĥ).     

Therefore, the components, relations, and predicates which are valid for Theory A have 

corresponding components, relations, and predicates in B, resulting in the consistency of B.  By 

definition, the predicates of B comprise a theory.    

Since the theories are isostruct, any proof in C is applicable to a corresponding proof in B, since they 

will have corresponding axioms and assumptions.  Further, any predicate in B not in A can be taken as an 

assumption or axiom from which resulting theorems can be derived by the Sentential and Predicate Calculi.    

The value of this theorem is that it establishes that the logic of the Axiomatic Sentential and 

Predicate Calculi apply to theory B.    

As has been shown above, there is a distinction between retroduction and abduction.  The Abduction 

Theorem is given below.   
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Abduction Theorem.  Given theories A and B, theory A is a formal model-of theory B  if there is a 

subset, C, of A such that the predicates of B are an equivalent representation in form of the predicates of 

C; whatever is true of C is true of B; and whatever is true of B is true of C.   

The formal statement of the Abduction Theorem is:       

h  ĥ, P(h) ≊ P(ĥ), P(h) ≊ P(ĥ) ⊢ P(h)C  A :≡: P(ĥ)G  B 

Proof of Abduction Theorem:   

(1) h  ĥ          Assumption 

(2) P(h) ≊ P(ĥ)        Assumption  

(3) P(h1), P(h2), …, P(hn)C  A     Assumption  

(4) P(ĥ1), P(ĥ2), …, P(ĥn)G  B     Substitution, 1 in 3 

(5)  ∴ P(h1), P(h2), …, P(hn)C ⊢ P(ĥ1), P(ĥ2), …, P(ĥn)G  From 3 and 4 

(6) ⊢ P(h1), P(h2), …, P(hn)C  P(ĥ1), P(ĥ2), …, P(ĥn)G           Deduction Theorem on 5 

(7) ∴ P(ĥ1), P(ĥ2), …, P(ĥn)B ⊢ P(h1), P(h2), …, P(hn)C  A From 4 and 3 

(8) ⊢ P(ĥ1), P(ĥ2), …, P(ĥn)B  P(h1), P(h2), …, P(hn)C  A   Deduction Theorem on 7 

(9) P(h) ≊ P(ĥ) ⊢ P(h1), …, P(hn)C  A :≡: P(ĥ1), …, P(ĥn)B      Definition, 4 & 7 / Q.E.D. 

The significance of this theorem is that formal predicates of a given theory that are isomorphic to 

formal predicates of another theory, define the properties of the second theory.   
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Types of Models 

Steiner presents the concept of ‘model’ as a dichotomy:  ‘model-of’ and ‘model-for’.   

Intuitively, ‘model-of’ corresponds to the familiar type of construction models—model cars, model 

planes, etc.  Also, intuitively, ‘model-for’ corresponds to the familiar type of exemplary models—

professional models who exemplify appearances or role models who exemplify behaviors.   

From these examples, it is seen that a ‘model-of’ is a representation of an object, possibly a “scale 

model”; and a ‘model-for’ is the object that is being represented in an ideal; for example, a “super model.”   

Model-of is a scaled version of the intended object.   

Model-for is a paradigm that can be used to describe ideal structures.   

These models are designated, respectively, first-order model and second-order model.   

Models that are used to devise theory by retroduction are second-order models.  They provide the 

perspective desired to develop the new theory.  Thus Steiner defines the relation between the types of logic 

and the types of models as follows:   

Retroductive Logic =df Devising of theory from a second-order model.   

Deductive Logic =df Explicating a theory for clarification or completeness.   

Inductive Logic =df Evaluating a theory to delineate the range of defined objects.   

A theory may be further delineated by the referents of the theory.  If the theory is about actually 

existing objects, then it will be called an ‘empirical theory’.  For example, theorizing about social referents 

is an attempt to characterize actually existing objects falling within the domain of some social context or 

process.  Education theorizing is such a theory; it is empirical theorizing.  In an empirical theory, the 

statements not only express the nature of the objects, but also the way in which the objects are interrelated.   

In view of the preceding, in this study, ATIS is a model-for education theorizing.  SimEd or SimTIE, 

on the other hand, are models-of educational systems.   

Now that the type of theorizing has been established, the ATIS model will be further explicated.  ATIS 

is a logico-mathematical model; that is, it is a formal model with logical and mathematical formalizations.    
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ATIS as a Mathematical Model Theory  

In mathematics, model theory is defined as a branch of logic that studies mathematical structure, 

and, in particular, the structures of axiomatic set theory.  ATIS is a generalization of mathematical model 

theory.    

Axiomatic set theory is set theory founded on axioms with no empirical content.  As set theory is 

closely associated with mathematical logic, there is an integration of the Sentential and Predicate Calculi in 

ATIS that results in a formal theory that provides the rigor of deduction and proof.    

While the properties and axioms of ATIS are initially framed in the context of an empirical theory, 

those properties and axioms are transformed into a formal logico-mathematical theory that allows for the 

analysis of ATIS as a formal theory.   

 

Mesarović’s General Systems Theory Mathematical Model.  Others have developed 

mathematical models for general systems theory.  One in particular, Mihajlo D. Mesarović, has developed 

this area extensively.   

Mihajlo D. Mesarović, in “A Mathematical Theory of General Systems,”41 has developed measures 

for system properties.  In his work, Mesarović restricts the measures to “General Systems Theory of 

Hierarchical Systems.”42  The mathematical measures developed by Thompson in this study are a 

generalization of the Mesarović measures as extended by Yi Lin.43   

However, Mesarović also introduces a “coordination strategy” that will not be applied to ATIS 

measures.  This strategy was designed by Mesarović to “adjust” the theoretical projections with actual 

observations.  As described, it appears to simply classify two sets of systems, those that can be “adjusted” 

and those that cannot.  Such a dichotomy is not appropriate for the type of systems here being considered.  

For ATIS, the criteria for verification are with respect to the theorems of the theory without adjustment.     

The distinction between the Mesarović approach and that proposed here is that Mesarović relies on 

models that are “scientifically” developed yet closed, whereas the approach here is founded on the logic of 

system’s theory; such logic resulting in an open-ended theory that provides for an infinite number of 

outcomes.   

As described earlier, the proposed model for this research can be tailored to the specific needs of an 

empirical system without having to modify the initial program, as would have to be done in a Scenario-

Based Model.   

                                                 
41 Mesarović, Mihajlo D. (1972), “A Mathematical Theory of General Systems,” Trends in General Systems Theory, 

Ed., George J. Klir, Wiley-Interscience, p. 251.   

42 Ibid., p. 264.   

43 Lin, Yi (1999), General Systems Theory:  A Mathematical Approach, Kluwer Academic/Plenum Publishers, NY.   
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While Mesarović has contributed greatly to the mathematical development of general systems 

theory, his system models do not have a basis founded on theory.  One such model is WIM (World 

Integrated Model) that was developed with 49 subroutines.  It was quite refined in that it utilized about 

21,000 numbers to describe the state of the global system at any one time.  At one time, WIM could be 

viewed online at http://genie.cwru.edu/scenarioanalysis.htm; however, it is no longer available.   

The direction being taken by the study herein presented is distinct from that of most, if not all, other 

social models—this SimEd Model will rely on a Logic-Based Model for its projections.  It is believed that 

the parameters are too numerous and the possible outcomes are so extensive that anything less would result 

in a model that could end up with the same shortcomings as that recognized by Friedman concerning 

SimCity.   

With this introduction to ATIS, it is seen that in order to have a legitimate empirical model that can 

result in empirically-verifiable empirical results, the model must be founded on a Logic-Based Model, and 

that ATIS, being an axiomatic theory, provides just such a basis.    

We will now take a more in-depth look at the development of ATIS and its value for empirical studies 

of intentional systems.   

 

‘Theory’ and ‘General System’ Definitions 

The definitions of theory and General System must be considered in more detail, and how they can 

address the needs of those industries concerned with predicting system outcomes founded on various 

structural scenarios desired by an organization or as the result of empirical observations.   

Since the systems of concern are characterized by vast amounts of information, we can come to an 

understanding of such systems by seeing what is being done in industries that have dealt with large amounts 

of information.  One such industry that must interpret vast amounts of data is the counter-terrorist industry.  

This industry previously utilized the Total Information Awareness (TIA) System, but it was discontinued due 

to privacy concerns.  However, since it utilized data-mining technologies, it would have been limited in its 

ability to actually provide individually-predictive outcomes.   

A report concerning the TIA System, however, does highlight the direction being pursued in this 

industry to respond to the terrorist threat, and provides key points that should be considered when 

attempting to find a means by which the terrorist threat can be identified.   

 

http://genie.cwru.edu/scenarioanalysis.htm
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In a report by the Defense Advanced Research Projects Agency’s Information Awareness Office, it 

states:   

“It is difficult to counter the threat that terrorists pose.  Currently, terrorists are able to move freely 

throughout the world, to hide when necessary, to find unpunished sponsorship and support, to operate in small, 

independent cells, and to strike infrequently, exploiting weapons of mass effects and media response to 

influence governments.  This low-intensity/low-density form of warfare has an information signature, albeit not 

one that our intelligence infrastructure and other government agencies are optimized to detect.  In all cases, 

terrorists have left detectable clues that are generally found after an attack.”   

Therefore, what is needed is a means of identifying the “clues” prior to an attack.  It is also noted that 

similar concerns are confronted in our pursuit of a reliable education system where it is desirable to be able 

to discern outcomes of changes in education methodologies in a timely manner rather than having to wait 12 

or more years before results can be recognized.   

In response to the terrorist threat, the technologies being sought are characterized as follows:   

 Real time learning, pattern-matching and anomalous pattern detection 

 Human network analysis and behavior model building engines 

 Event prediction and capability development model building engines  

 Data mining of unstructured data  

 Information discovery through statistical methods  

As noted, these same concerns can be applied to education systems.   

The following charts depict the efforts that the TIA was trying to address, and can be found at the 

following website:  

(http://en.wikipedia.org/wiki/Information_Awareness_Office#Components_of_TIA_projects_that_continue_to_be_de

veloped) 

 

http://en.wikipedia.org/wiki/Information_Awareness_Office#Components_of_TIA_projects_that_continue_to_be_developed
http://en.wikipedia.org/wiki/Information_Awareness_Office#Components_of_TIA_projects_that_continue_to_be_developed
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Diagram of Total Information Awareness System, taken from official 

(decommissioned) Information Awareness Office website 

What this chart does show is the vast amount of information that must be integrated and analyzed in 

order to determine predictive outcomes.   

However, the difficulty with all of the approaches cited above, the technologies being sought, is that 

they rely on statistical-based analyses.  The same can be said for any industry today where predictive 

technologies are being considered; and especially in education.  What is actually wanted, however, is the 

ability to detect discrete indicators, not group indicators that are provided by statistical-based analyses.  

That is, “In all cases, terrorists have left detectable clues that are generally found after an attack.”  

These are discrete indicators that can never be identified by the use of group indicators.   

For example, in education, we can frequently recognize problems after the fact and can recognize 

“indicators” that should have pointed us in the right direction.  For example, on-going modifications of a 

school system or a class are done in response to “feedback” that the current plan needs modification.  Those 

indicators are discrete and in order to optimize instruction, they must be found prior to the compromising of 

instruction.  Statistical-based analyses, by design, cannot detect such indicators, since they only “detect” 

that which has already happened and only with respect to the group and not the individual.   

http://upload.wikimedia.org/wikipedia/en/6/6b/Total_Information_Awareness_--_system_diagram.gif
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When considering how to predict system optimization, we must first understand the nature of the 

problem and what solutions are even feasible for solving the problem.  We will start with the following 

premise:   

Group-Predictive Premise 
Statistical analyses are, by design, only group-predictive, and can—by design—

never be individually predictive; that is, they can never identify discrete indicators.   

It is important to state this premise since essentially every approach now being taken in education, 

business, the military, etc. is founded on a statistical-based analysis.  Hypotheses are verified by statistical 

studies.  This is especially the case with respect to unstructured data.  Data-mining is a critical tool for 

developing patterns of business or educational behavior.  However, such analyses cannot provide discrete 

predictions.  Further, in all such analyses, patterns must be determined and that can only be done after the 

activity is well developed.   

An axiomatic theory; however, can provide analyses with respect to discrete indicators and is 

required for predicting individual outcomes.   

We will start by taking another look at the definition of General System and how it should be defined 

in order to analyze intentional systems.   
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Definition of General System 

From a review of the literature, it is clear that there are various definitions of system as well as 

general system.  Some of the definitions are required due to mathematical concerns.  Others are very 

imprecise and are used for descriptive arguments rather than logical or mathematical precision.  The 

definition used here follows the convention in mathematics of a system, S, being an ordered pair consisting 

of an object-set, S, and a relation set, R; that is:     

S = (S,R). 

This definition can be brought into the context of education or terrorist network systems by citing the 

definition provided by Steiner and Maccia as follows:   

System, S, =df A group with at least one affect relation that has information.44 

S =df (S,R) = (Sx,S); where S = Sx and R = S.   

A system is an ordered pair defined by an object-set, Sx, and a relation-set, S.      

It is noted that with the development of ATIS, the requirement that the affect-relation “has information” has 

been dropped due to theoretical concerns.   

In this study, a more extended definition of system is required to more fully define General System.  

This extension is also required to more clearly define the topology and/or relatedness of a system by its 

object-sets and relation-sets; as well as allow for a more rigorous and comprehensive development of the 

system logic required for a logical analysis.   

 A General System is defined within a Universe of Discourse, U, that includes the system and its 

environment.  The only thing that demarcates the systems under consideration is the “Universe of 

Discourse.”  And, while that universe may be somewhat fuzzy, whatever systems are being considered will 

be well defined.  In the case of Educational Systems the boundary of the universe may be quite fluid, or 

possibly unknown, especially with respect to the object-sets.   

U is partitioned into two disjoint systems, S and S’.  Therefore, Universe of Discourse has the 

following property:   

U = S ⋃ S’; such that, S ⋂ S’ = ∅.   

The disjoint systems of U, S and S’, are defined as system and negasystem, respectively.   

 

                                                 
44 Steiner, Elizabeth and Maccia, George, (1966), Development of Education Theory Derived from Three Educational Theory 

Models, Project No. 5-0638, Contract No. OE4-10-186, The Ohio State University Research Foundation, Columbus, Ohio, p. 44. 
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System environment and negasystem environment are defined as follows:   

System environment, S’, =df The components of the universe not in the system.   

Negasystem environment, S, =df The components of the universe not in the negasystem.   

A General System, G, is frequently defined by the following parameters:   

 Family of Affect Relations Set, A;  

 Object Partitioning Set, P ;  

 Transition Function Set, T ;  

 Linearly Ordered Time Set, ; and  

 System State-Transition Function, .   

That is:    

General system, G, =df A set of affect relations, partitioned components, transition 

functions, time set and a system state-transition function.    

G =df (A, P, T, , );  

 

However, although, this definition of General System provides a fairly comprehensive view of what is 

required to properly analyze the functioning of a system, in order to address the concerns of the desired 

intentional systems this definition needs to be extended.  First, the above cited parameters are defined as 

follows:   

Affect Relation Set:  A, the Affect-Relation Set, corresponds to the previously stated relation-set, S.  

Intuitively, this is the set that contains all of the “relations” between elements of U.  This is a “set of sets.”  

However, in this case, the sets are defined by specific Affect Relations.  For example, these sets will be 

defined for an educational system as follows:  “Teacher-Student Instructional Relation”; “Student-

Textbook Relation”; “Student-Parent Relation”; “Administrator-Business Community Relation”; etc.  As 

can be seen, this set can become quite large with numerous subsets, the various relations of an educational 

system.  This is where the concern of “system refinement” must be considered; that is, when selecting 

relations that are to be considered for the educational system, the Least-Refined Definition Principle must 

be employed.   

Least-Refined Definition Principle:  Any system can be viewed with greater refinement, but the level of 

refinement must be minimized to obtain the greatest predictive results—a view that is possibly counter-

intuitive.   

Possibly the easiest way to visualize this is to remember that you do not want to let the minute details get in 

the way of being able to see what is going on.  If we were cognizant of everything around us, we would not 

be able to function properly due to all the noise.   
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Object Partitioning Set:  P, the Object Partitioning Set, corresponds to the previously stated object-set, Sx.  

Intuitively, this is the set that contains all of the “things” within an educational system or terrorist network 

system or other large system and its negasystem:  students, teachers, administrators, learning materials, 

community resources, etc.; or terrorists, financial resources, supporters, etc.  What is special about this set, 

however, is that it is a “set of sets”; its elements are subsets of Sx.  And, any one object of the system can be 

in only one subset, hence the name “Partitioning.”  For example, even if a “student” at times fills an 

instructional capacity, the individual can only be placed in one set—either the individual is a “student” or a 

“teacher,” but not both at any one time.   

Transition Function Set:  T, the Transition Function Set, is necessary in order to “move” objects about the 

Universe, U.  The elements of this set are the functions defined by feedin, feedstore, input-feedintra, 

storeput-feedintra, feedout, feedthrough, feedenviron, and feedback.  Without them, nothing moves.  Also 

this provides for the dynamics of the system whereby individuals, as above, can be placed in the “student 

set” at one time and the “teacher set” at another time.   

Linearly Ordered Time Set:  , the Linearly Ordered Time Set, is required in order to give the intentional 

systems a dynamic property.  This set helps to keep the system organized!  Intuitively, this set may be the 

easiest one to apply to the educational system.  That is, essentially it allows you to attach to an event the 

appropriate “time” that the event occurs.  Without this set there would be no order or sequence to the events 

of the system.  Also, this is necessary for any application of APT Values (Scores) [Analysis of Patterns in 

Time Values].45   

System State-Transition Function:  , the System State-Transition Function, is required in order to alter 

the “state” of an educational system.  Whereas T, the Transition Function Set, moves objects about the 

system,  changes the state of the system as a result of the new Affect-Relations defined by the move or new 

affect-relations introduced into the system.  Both T and  produce a change in the system, but each is 

required in order to define the changed system.   

Now that each parameter has been defined and described, let’s take another look at the definition of 

General System:   

G = df (A, P, T, , ) 

Here we do need a refinement of the definition to provide greater relatedness of these parameters.  

That is, an additional parameter must be introduced.  The definition is changed as follows:    

G = df (A, P, Q, T, , ) 

In this definition, another parameter has been added—Q  (qualifiers, normally for component-qualifiers).    

With this modification, we now have the following definition:   

 

                                                 
45 Frick, T. (1990).  “Analysis of Patterns in Time (APT): A Method of Recording and Quantifying Temporal Relations in 

Education.”  American Educational Research Journal, 27(1), 180-204. 
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General System Defined:   

General System =df a set of affect-relations (A) which determine a set of partitioned components (P) 

defined by component-qualifiers (Q), a transition functions set (T ), a linearly-ordered time set (), 
and a state-transition function (σ).    

 This definition is formalized as follows:   

G =df [A ⊩ (P (Q, T, , ))]; where 

‘⊩’ is read “determines” or “which determine” or “from which is/are derived”, as appropriate for the 

sentence in which it is used.  This symbol is similar in intent to the logical “yields”, but whereas 

“yields” is a logical relation for a deductive proof, this is a predicate relation identifying that which is 

derived from the existent set.     

 That is, a system is first recognized by the affect-relations and not the components of the system, as 

is commonly assumed.  From the affect-relations, the partitioned components are obtained.  Then the 

component-qualifiers are determined; that is, the properties of the system.  Then the relatedness of the 

components through the transition functions is determined, a time assigned, and the state-transition is 

determined.   

Now, let’s take a look at the elements of each of these sets.   

The sets that define G have the following elements:   

A1, A2, …, An  A;  

Tp, Ip, Fp, Op, Sp, Lp, SBX, S’BY  P ; that is, 

toput, input, fromput, output, storeput, spillput, system logistic qualifier, negasystem logistic qualifier, system 

background components, and negasystem background components.   

L, L ’  Q ; that is, L are the system qualifiers, and L ’ are the negasystem qualifiers.   

I, O, T, B, E, S  T; that is, feedin, feedout, feedthrough, feedback, feedintra, and feedstore.   

t1, t2, …, tk  .  ⊂ TpL 

Let the object-set of a General System, GO, be such that GO = SX ⋃ S’Y; where SX and S’Y are the 

object-sets of S and S’, respectively.  Then, GO is defined by the following:   

GO = df SX ⋃ S’Y = (Ip ⋃ Fp ⋃ Sp ⋃ L  ⋃ SBX) ⋃ (Tp ⋃ Op ⋃ Lp ⋃ L ’ ⋃ S’BY).   

Further, as all of these sets are disjoint, the following holds:   

Ip ⋂ Fp ⋂ Sp ⋂ L  ⋂ SBX ⋂ Tp ⋂ Op ⋂ Lp ⋂ L ’ ⋂ S’BY =  ∅.   
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Diagram of System Properties:  The following graph characterizes the properties of a General System.   
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Summary 

In this report we have discussed theories and models, and how ATIS is developed as an axiomatic 

formal empirical theory designed specifically for intentional systems.   

Theories of learning were discussed and why it is that they do not and cannot provide a 

comprehensive and consistent theory, and why hypothesis-based development cannot result in a theory of 

learning.   

We discussed the distinction between scenario-based and logic-based models and why a logic-based 

model is required if actual predictive outcomes are desired when studying educational systems or other 

types of intentional systems.   

We also discussed how an empirical theory must be developed and why a logico-mathematical 

theory is required in order to gain a real understanding in the social sciences.   

A definition of general system was presented and was given an initial formal development.   

 

 

 

 


