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ATIS Developments & ATIS-Analyses 
 

 

Abstract 

This report provides developments of Thompson’s Axiomatic Theory of Intentional 

Systems (ATIS) and ATIS-Analyses.  Further, it provides an in-depth analysis of Theodore 

W. Frick’s APT-analysis which is a temporal analysis of empirical events.  Such an APT 

analysis is critical to the development of ATIS as it provides the basis for being able to 

analyze temporal empirical events by means of an axiomatic theory.  Prior to this 

development, there had been no way to analyze temporal empirical events by an axiomatic 

theory, as such analyses have had to rely on statistical analyses.   ATIS, founded on an 

emendation of General Systems Theory, provides the means to predict events individually, 

rather than having to wait for “patterns” to develop as is required with data-mining 

analyses.  Further an ATIS-topological-analysis provides the means to effectively integrate 

and use metadata in a manner that provides real-time results and yet maintains personal 

security that is of concern to everyone in a free society.   

Further, as a result of Yi Lin’s work, it is now possible to analyze a system with 

multiple relations on a single component set.  Such a capability makes ATIS-analyses 

possible for predicting results for intentional systems.   

 Also, as a result of Frick’s work with respect to SIGGS, he defined the various 

affect-relations as being basic, structural and dynamic.  From this, Thompson recognized 

that the structural relations defined the topology of an intentional system that gives rise to 

the ability to make predictions of an intentional system on a real-time basis.  While the full 

value of topological analyses have not been developed in this report, the properties of a 

topology that should be of value are presented, as well as a constructive decision-procedure 

for determining a topology for any intentional system is given.   

Also of value, an effective definition of General System is given as well as the 

General System Object-Set, GO, Construction Decision Procedure  and Affect Relation-Set, 

GA, Construction Decision Procedure that clearly defines intentional systems so that they 

can be analyzed axiomatically.  Affect-Relation Properties and Information-Theoretic 

Properties are also defined so that they can be incorporated into an ATIS-Analysis.   

 Further, the definition of General System is refined to provide more clarity (see page 

18).   
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Background Summary 

In the 1920’s, Ludwig von Bertalanffy envisioned a General Systems Theory1.  As a 

biologist, von Bertalanffy was concerned with behavioral and intentional systems.  He 

clearly stated the mathematical foundations of his theory in his report “The History and 

Status of General Systems Theory”2:   

 The goal obviously is to develop general systems theory in mathematical terms – a 

logico-mathematical field – because mathematics is the exact language permitting rigorous 

deductions and confirmation (or refusal) of theory.   

In the 1960’s, there were two major independent efforts made relating to 

developments in General Systems Theory.  One was by the engineer and mathematician 

Mihajlo D. Mesarović, and the other was by the philosopher Elizabeth Steiner and the 

historian and mathematician George S. Maccia.  The developments by Mesarović were 

more restrictive and in line with traditional developments of engineering models 

simulating various intentional systems, while the developments by Steiner and Maccia 

were more comprehensive and provided the first formalization of a Scientific Education 

Theory derived from General Systems Theory.   

Mesarović’s work, however, did lead to critical developments in mathematical 

models of General Systems; however, such characterizations were restricted to systems 

represented by a single relation.3  A true mathematical analysis of General Systems Theory 

requires the ability to recognize multiple relations for one system.  It would be another 30 

years before that would be accomplished.   

Also in the 1960’s, Steiner and Maccia published their comprehensive treatment of 

General Systems Theory in developing a devising model for educational theory, the SIGGS 

Theory Model.  This work was published in 1966, Development of Educational Theory 

Derived from Three Educational Theory Models.4  This work was the first development of 

a scientific or empirical education theory.  A-GSBT (subsequently changed to ATIS) is an 

extension of this work by Steiner and Maccia.   

                                                           
1 For Internet references, consider:  http://panarchy.org/vonbertalanffy/systems.1968.html, 

http://www.nwlink.com/~donclark/history_isd/bertalanffy.html, 

http://en.wikipedia.org/wiki/Ludwig_von_Bertalanffy, http://www.mind-development.eu/systems.html, 

http://www.isnature.org/Events/2009/Summer/r/Bertalanffy1950-GST_Outline_SELECT.pdf.   

2 Bertalanffy, Ludwig von (1972), “The History and Status of General Systems Theory”, Trends in General 

Systems Theory, G.J. Klir (ed.).   

3 Mesarović, Mihajlo D. (1972), “A Mathematical Theory of General Systems,” Trends in General Systems 

Theory, G.J. Klir (ed.).   

4 Maccia, Elizabeth Steiner, and George S. Maccia (1966), Development of Educational Theory Derived 

from Three Educational Theory Models, The Ohio State University Research Foundation, Columbus, Ohio.   

http://panarchy.org/vonbertalanffy/systems.1968.html
http://www.nwlink.com/~donclark/history_isd/bertalanffy.html
http://en.wikipedia.org/wiki/Ludwig_von_Bertalanffy
http://www.mind-development.eu/systems.html
http://www.isnature.org/Events/2009/Summer/r/Bertalanffy1950-GST_Outline_SELECT.pdf
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In the 1980’s, Theodore W. Frick extended the SIGGS Theory Model by classifying 

the SIGGS properties into three categories:  Basic, Structural and Dynamic.5   

The recognition of the SIGGS categories by Frick led Thompson, in the 1990’s, to 

recognize that the Structural Properties define the topology of a system.  Developed 

properly as a mathematical theory, SIGGS could now be developed in a manner that could 

utilize the power of mathematics in educational theorizing.   

But, there was still one problem that had to be overcome in order to treat SIGGS or 

any General Systems Theory mathematically—how to treat multiple relations in a system 

mathematically?  It was as a result of Mesarović’s work that Yi Lin extended the 

mathematical model so that multiple relations could be considered with respect to a single 

system6.   

This critical advancement by Lin in 1999 made it possible for Thompson to develop 

ATIS as an extension of SIGGS in a manner that the multiple relations of a system can be 

made mathematically precise.  This advancement makes it possible to realistically 

recommend that ATIS can be used as a logical basis for intentional system models.  In 

particular, the work of Frick has extended the SIGGS Theory in such a manner that his 

SimEd model for education can be founded on the ATIS theoretical base (an axiomatic 

logico-mathematical base), thus eliminating the need to rely on scenario-based models, as 

Mesarović and others have had to do.   

 

 

 

                                                           
5 Since this report is intended for both those who are very familiar with axiomatic theories and those who are not, in 

order to facilitate the understanding of those who are not, there will be numerous hyperlinks to other sources that 

define or discuss various terms used in this report.   

 
6 Lin, Yi (1999), General Systems Theory:  A Mathematical Approach, Kluwer Academic/Plenum 

Publishers, NY.   

http://www.indiana.edu/~aptac/glossary/atisBasicProperties.pdf
http://www.indiana.edu/~aptac/glossary/atisStructuralProperties.pdf
http://www.indiana.edu/~aptac/glossary/atisDynamicProperties.pdf
http://mathworld.wolfram.com/Topology.html
http://pespmc1.vub.ac.be/ASC/GENERA_THEOR.html
https://www.indiana.edu/~simed/overview/
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Critical Developments for a Logico-Mathematical Theory 

In 1964, M.D. Mesarović, in “Foundations for a General Systems Theory,” 

recognized two distinct approaches to the representation of a system:  The “terminal 

approach,” and the “goal-seeking approach.”  The terminal approach is the conventional 

representation of system as an entity that looks at a system from the outside and defines it 

in terms of subset mappings, as is done in physics, chemistry, engineering, etc.  While, as 

Mesarović notes, such systems could be defined as goal-seeking systems, such 

representation would be meaningless, artificial or trivial.   

Due to the strong bias toward empirical theories designed from the terminal 

approach, and physics, in particular being the paradigm for empirical theory development, 

the development of intentional system theories based on a goal-seeking approach is much 

less understood, if recognized at all.   

The goal-seeking approach incorporates an invariant base that defines the 

system’s goals.  Further, the affect relations of the system are defined so that they are 

related to the attainment of the system’s goals.  Such a system description results in 

the ability to predict the system’s behavior.  That is, by defining an axiomatic 

description of a system, the means are then available to predict the system behavior—its 

end-target or predictive outcomes—under conditions that are different from its previous 

behaviors.   

An axiomatic-based system description is critical for an intentional, 

behaviorally-predictive system.  Predictions derived therefrom are not dependent on the 

result of previous behaviors, experiments or outcomes.  Predictions are dependent on a 

parametric analysis of an existing system state.7  A sequence of previous system states 

can define a dispositional system behavior, but are used, not as a definitive guideline for 

predicting future behavior, but as part of a comprehensive analysis of the existing system 

state.   

 

 

                                                           
7 A parametric analysis is an analysis of relationships between system components.  A nonparametric analysis is an 

analysis of relationships between descriptive; that is, non-specific, and inferred relationships that a researcher may 

propose in the process of identifying system components in a rough set.  Classical sets contain elements (components) 

that are well-defined, and elements can be specifically determined as to whether or not they belong to the sets.  Fuzzy 

sets contain elements (components) that are not well-defined or are vaguely defined so that it is indeterminate which 

elements (components) belong to the sets although other elements (components) may be well-defined as in classical 

sets.  Rough sets are defined by topological approximations, which include elements (components) that are 

well-defined as in classical sets, and elements (components) that may or may not be in the set.  These potentially 

rough set components are not fuzzy set elements (components) since they are not vaguely defined, they are just 

unknown concerning the set property.   

 

http://www.indiana.edu/~aptac/glossary/atisAffectRelationSet.pdf
http://cdn.intechopen.com/pdfs/5939/InTech-Rough_set_theory_151_fundamental_concepts_principals_data_extraction_and_applications.pdf
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Statistical analyses rely on past performance to predict future group behavior.  

Statistical analyses can never be individually predictive.   

Axiomatic analyses rely on the internal structure of the system to determine its 

current goal-seeking behavior.  Thompson emphasizes the critical nature of this 

observation—predictions made with respect to intentional, behavioral systems are 

obtained as the result of the system structure at a given time.  The structure 

determines not only what is possible, but also the intent of the system as determined by its 

goal-seeking parameters.   

It is recognized that the behavior of goal-seeking systems are much more complex 

than the behavior of terminal systems.  However, systems can and do function in spite of 

their complexity.  The problem, then, is to analyze the system in terms of its internal 

functioning structure, rather than by attempting to analyze each component of that 

structure.  Components are considered in their relatedness to other components and how 

that relatedness helps to define the system structure.  They are not considered in such 

minute detail that the structure; that is, the intent and behavior of the system is obscured.   

While there are many disciplines pursuing the study of General Systems Theory 

(GST), none have gotten at the promise of providing a comprehensive intentional, 

behavioral theory envisioned by von Bertalanffy.  These disciplines include cybernetics, 

dynamic systems theory, control theory, information theory, set theory, graph theory, 

network theory, game theory, decision theory, chaos theory, complex adaptive systems 

theory, among others.  Each has helped to answer questions within their defined areas of 

study, but none are behaviorally predictive.   

C. Francois of the International Society for the Systems Sciences (ISSS) has 

addressed the unresolved problem of predictability within the behavioral sciences during a 

seminar on systemic inquiry and integration.  He asserts that the reason the disciplines to 

date are not behaviorally predictive is that they fail to address one of the more important 

unresolved problems of GST—how to develop a system theory that describes multiple and 

shifting interrelations and interactions between numerous elements at various levels of 

complexity of a system.   

To describe the complexity of a system cited by C. Francois, it is asserted that no 

piecemeal approach can lead to a good understanding of the structure and dynamics of the 

complex wholes.  What ISSS claims is needed is a set of concepts and models that can be 

used to understand relationships and moreover, simultaneous, transient and shifting 

relationships.  Their approach to the problem, however, is inadequate.  Their approach is:   

We must collect all synergetic concepts and models.  We must integrate them in multiple 

cross ways.  We should construct sets of any number of them and use these specific tools to 

resolve or at least better manage unresolved complex problems.  [“Target Paper” by C. 

Francois, ISSS.]   

http://pespmc1.vub.ac.be/ASC/STRUCTURE.html
http://pespmc1.vub.ac.be/ASC/GENERA_THEOR.html
http://pespmc1.vub.ac.be/ASC/CYBERNETICS.html
http://www.math.huji.ac.il/~mhochman/research-expo.html
http://www.exrx.net/Psychology/ControlTheoryReview.html
http://pespmc1.vub.ac.be/ASC/INFORM_THEOR.html
http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Decision_theory
http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Complex_adaptive_system
http://en.wikipedia.org/wiki/Complex_adaptive_system
http://www.isss.org/
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Such an approach by the ISSS is doomed to failure from the outset.  Existing 

concepts and models, due to their targeted specific objectives are inconsistent when 

combined.  Further, integrating models that address specific subsystems do not thereby 

describe the entire system when combined—the whole is not simply an accumulation of its 

components, a basic tenant of General Systems Theory itself.   

What must be developed is a comprehensive and consistent theory describing 

intentional (behavioral) systems.  That is the focus of this research—to develop ATIS that is 

expressed by a rigorous definition of system, a comprehensive listing of axioms and a 

logico-mathematical derivation of its implications (theorems/hypotheses)—that is, its 

predictive results.  This research will develop an axiomatic theory that uses the Predicate 

Calculus, Mathematical Topology, and APT8 to analyze complex system relations.   

Predictive results are possible due to the evaluations of the total interactions and 

connectedness of the different system components, rather than an analysis of each type of 

system relation individually.  A further clarification is found by distinguishing General 

Systems Theory from Cybernetics.  Cybernetics focuses on the function of a system; that 

is, how a system controls its actions via feedback mechanisms, how it communicates with 

other systems or with its own system components.   

General Systems Theory, on the other hand, focuses on the structure of a system; 

that is, how a system changes as a result of structural modifications resulting from 

changing component relations, receiving input, emitting output, changing environmental 

relations, etc.  Hence, the resulting predictability targeted by this research arises as a result 

of evaluating a system’s structural changes in terms of known theoretical outcomes.  

Structural changes that result from specific system modifications are predictable by 

Axiomatic Theory of Intentional Systems (ATIS) in the same manner as physics predicts the 

behavior of the physical universe as founded on the appropriate theory of physics.   

An additional concern of Complexity Theory must be addressed.  “Complexity 

Theory is the study of emergent order in what are otherwise very disorderly systems.”9   

In a sense, complex systems innovate by producing spontaneous, systemic bouts of 

novelty out of which new patterns of behavior emerge.  Patterns, which enhance a system’s 

ability to adapt successfully to its environment, are stabilized and repeated; those that do 

not are rejected in favor of radically new ones, almost as if a cosmic game of trial-and-error 

were being played.10   

 

                                                           
8 See Theodore W. Frick’s reports at:  http://educology.indiana.edu/Frick/index.html, and the reports listed under 

“Pattern Analysis”.   

9 McElroy, M.W. (2000), “Integrating Complexity Theory, Knowledge Management and Organizational 

Learning,” Journal of Knowledge Management, V.4, No.3, 2000, p. 196.   

10 Ibid.   

http://pespmc1.vub.ac.be/ASC/GENERA_THEOR.html
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/Topology
http://pespmc1.vub.ac.be/ASC/GENERA_THEOR.html
http://pespmc1.vub.ac.be/ASC/GENERA_THEOR.html
http://pespmc1.vub.ac.be/ASC/CYBERNETICS.html
http://pespmc1.vub.ac.be/ASC/CYBERNETICS.html
http://pespmc1.vub.ac.be/ASC/FUNCTION.html
http://pespmc1.vub.ac.be/ASC/GENERA_THEOR.html
http://pespmc1.vub.ac.be/ASC/STRUCTURE.html
http://educology.indiana.edu/Frick/index.html
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Such a problem in Complexity Theory is what C.S. Peirce described as a tychistic 

event due to chance spontaneity within a system exhibiting synechistic (continuity) 

characteristics.  The process of evolution is one such example of the tychistic-synechistic 

mechanism.  However, with ATIS there is no mystery about such processes.   Any tychistic 

event arises as system input, whether that is the result of genetic change or the intellectual 

contribution of an individual initiating a new social order.    

There is no mystery when systems are properly analyzed.  Air Force Colonel 

Warden 3rd recognizes the value of a system properly analyzed when he rightly asserts:   

“Terrorists are quite vulnerable when a proper 

analysis of a terrorist’s network system is made.”11   

The same is true of Complex Systems or General Systems.   

 

A Purposeful Existence and  

Operation Implies Predictability 

A close examination of systems reveals that the interaction of system elements acts 

as if they were simple units that can be described by a set of a few variables.  Their vast 

internal complexity is not directly manifested in their interactions.   

“This property of behavioral systems is not accidental:  If we were to allow the 

elements to reflect all their internal complexity in the interactions, then the system as a 

whole would most probably not be able to display any stable and predictable behavior.”  A 

purposeful existence and operation implies predictability.12     

Intentional systems are predictive by the very fact that they are intentional, and are 

the focus of this research.  Further, that predictability is not out of reach when an analysis is 

made of the system structure; as opposed to a detailed analysis of system components from 

which an attempt is made to infer system behavior.  ATIS does not provide a “causal 

analysis” for predictability.  Past events provide a basis for determining the dispositional 

behavior of the system, but they do not predict future behavior.  Behavior predictability is 

determined by system structure and not prior states.  Prior states determine system 

dispositional behavior that defines the invariant initial system structure, but not causality 

nor predictability.    

                                                           
11 Warden III, Colonel John A. (1988), “The Enemy as a System,” Air and Space Power Chronicles, 

National Defense University Press Publication, 13 pages.   

12 Mikhailov, A. S. (1990), Foundations of Synergetics, I:  Distributed Active Systems, Springer-Verlag, 

Berlin, p. 2.   
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A problem confronted by General System Theorists13 is that of accounting for 

multiple types of relations in a system.  As noted above, Y. Lin, in “A Model of General 

Systems” establishes that a General Systems Theory can be developed that defines more 

than one relation between the objects of the system.   

Frequently a general system, (V,S), is defined with respect to one type of relation as 

Mesarović has done:   

S  {Vi|iI}. 

Now, pursuant to Lin, assume that the set V has two relations defined by  and .  

Then, the system (V,{,}) is not a Mesarović system because the set {,} cannot be 

written in a uniform relation symbol without changing the object set V.   

In general, intentional systems will be of the form:  (V, i=1…nRi); where i  j implies 

that Ri  Rj, and represents the number of different relations defined on V.  These are the 

types of systems that concern theories to be developed from ATIS.     

 

Intentional Systems Theory 

The Steiner and Maccia Theory (formerly, Maccia and Maccia Theory) of 1966 has 

led to the development of a true scientific behavioral (intentional systems) theory.  Prior to 

this development, behavioral theories had been founded upon philosophical perspectives, a 

theoretical perspective from another science, the results of limited empirical research, 

hypotheses restricting the theory to a specific behavioral area, or an agenda, whether 

religious, political, or personal.  Although they may purport to be scientific theories, they 

have not been well developed as scientific theories and none are comprehensive as a 

behavioral theory.   

The theory model developed by Steiner and Maccia is the SIGGS Theory Model.  

SIGGS is an acronym for the theories that were used to develop the theory model.  Those 

theories are:  Set Theory, Information Theory, Graph Theory, and General Systems 

Theory.   

From this theory model the educational theory is retroduced.  To be retroduced 

means that content is added to the theory model to form the educational theory.14    

                                                           
13 Such theorists as:  Ludwig von Bertalanffy, Talcott Parsons, Niklas Luhmann, Béla Heinrich Bánáthy, Howard 

Thomas Odum, Eugene Pleasants Odum, Peter Michael Senge, Richard A. Swanson, and Debora Hammond.   

 
14 Maccia, p. 117.   

http://pespmc1.vub.ac.be/ASC/GENERA_THEOR.html
http://en.wikipedia.org/wiki/Ludwig_von_Bertalanffy
http://en.wikipedia.org/wiki/Talcott_Parsons
http://en.wikipedia.org/wiki/Niklas_Luhmann
http://en.wikipedia.org/wiki/B%C3%A9la_H._B%C3%A1n%C3%A1thy
http://en.wikipedia.org/wiki/Howard_T._Odum
http://en.wikipedia.org/wiki/Howard_T._Odum
http://en.wikipedia.org/wiki/Eugene_Odum
http://en.wikipedia.org/wiki/Peter_Senge
http://en.wikipedia.org/wiki/Richard_A._Swanson
http://en.wikipedia.org/wiki/Debora_Hammond


ATIS Historical Foundations, Theory Development Updates & ATIS-Analyses         Page 11 of 44 

 

© Copyright 1996 to 2015 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author.

 

 

The purpose of the current research is to develop an Axiomatic Theory of Intentional 

Systems, ATIS, or as previously described, a Behavioral Theory.  Such theory will be 

developed as a model that can be applied to a variety of intentional (behavioral) systems.  

In particular, it is intended that ATIS will be used as the logical basis for SimEd.  In 

particular, ATIS provides an Options Set, the ATIS Option Set,15 which can be used to 

develop an open-ended number of intentional system theories.   

The intent of SIGGS, as stated in the SIGGS Final Report is:   

“to set forth hypotheses [axioms] about human behavior and other factors 

involved in behavior irrespective of selected outcomes.”16   

The 1966 Final Report presented the hypotheses of the Behavioral Theory.  While 

SIGGS Theory has been available since 1966, there has been little development of the 

theory since that time (with the exception of the work by Frick and Thompson), and it has 

received little attention as a prospective model for behavior theory development.  The 

reason for this lack of attention has been recognized by Kira S. King and Theodore W. 

Frick in their article “Transforming Education:  Case Studies in Systems Thinking.”17  

Therein they state:   

Unfortunately, since SIGGS is written in highly complex mathematical language, 

it has received little attention since its creation.   

A further reason is that SIGGS and ATIS are axiomatic theories, whereas current 

emphasis for practically all research is on statistical analyses; e.g., data mining 

technologies, and similar research.   

The present work will do nothing to further resolve the problem of relying on a 

logico-mathematical theory.  The present work is designed; in particular, to provide an 

extensive formalization of the theory, and to, in fact, extend the mathematical rigor of the 

theory.  It will build on Steiner and Maccia’s 1966 work and the extension of that work by 

Frick.  Further, Frick’s development of APT will be integrated into this extended theory as 

a tool for evaluating specific dynamic applications of the theory.   

                                                                                                                                                                                           

 
15 An implementation of the ATIS Option Set has five steps:  (1) Identify the problem-statement that defines the 

components of the empirical system, (2) Identify the affect relations of the target system, (3) Analyze the affect 

relations to determine relevant properties, (4) The relevant properties identify the related axioms, and (5) From the 

related axioms, derive the theory-predicted outcomes, the theorems/hypotheses.   (P. 10 on the referenced site.) 

 
16 Maccia, p. 118.   

17 King, Kira S. and Theodore W. Frick (2000), “Transforming Education:  Case Studies in Systems Thinking,” ed:  

Education at a Distance, September, Vol. 14, No. 9.   

https://www.indiana.edu/~simed/overview/
http://educology.indiana.edu/Thompson/Theory%20Development%20in%20Education,%20Implementing%20the%20ATIS-Option%20Set.pdf
http://educology.indiana.edu/Frick/index.html
http://educology.indiana.edu/Thompson/index.html
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In order to accomplish the integration of APT as a tool for ATIS analyses, APT as 

defined by Frick will be modified to read as follows:   

APT is a method for gathering information about observable phenomena of 

an individual system such that temporal patterns of events can be used as 

constants in [ATIS] to predict individual behavior and outcomes.   

Returning now to the SIGGS Theory Model, hypotheses were developed from the 

education content given the theory model by the assigned properties.  Frick subsequently 

classified those properties into Basic, Dynamic and Structural Properties.  It is this 

classification that has led to the current research.   

The properties defined by Frick are as follows:   

 

 

 

 

 

 

 

 

Upon review of the work done by Frick, Thompson recognized that the Structural 

Properties represented the behavioral topology.  It was recognized that such a topology 

would bring the power of mathematics to the behavioral sciences as it has to other scientific 

theories.  Such power is needed if behavioral theory is to join the ranks of the other 

empirical sciences.   

 

What is Topology? 

In its most general form, topology is concerned with how things are connected.   

While it is frequently thought of in terms of geometrical forms, it is important to 

avoid this confusion.  

 Geometry is concerned with describing the shapes of things.   

 Topology is concerned with connectedness. 

Thought of in this way, it helps to eliminate that confusion, and suggests 

applications not generally considered as being topological.   

Basic Properties are those properties that are descriptive of a system. 
 

Dynamic Properties are those properties that describe patterns in time 

as change occurs within or between a system and its negasystem.   
 

Structural Properties are those properties that show how system 

components are connected or related to each other.   
 

http://educology.indiana.edu/resources.html
http://mathworld.wolfram.com/Geometry.html
http://mathworld.wolfram.com/Topology.html
http://www.indiana.edu/~aptac/glossary/atisBasicProperties.pdf
http://www.indiana.edu/~aptac/glossary/atisDynamicProperties.pdf
http://www.indiana.edu/~aptac/glossary/atisStructuralProperties.pdf
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Stephen Barr, Experiments in Topology,18 gives the following examples of topology 

applications:   

It frequently happens that when getting a cup of coffee one forgets the cream.  

The trick, here, is not to go and get the cream, but to take the cup to it.  The first way 

involves four trips:  going for the cream, bringing it to the table, taking it back right 

away, and returning to the coffee.  The other way involves two:  taking the cup to the 

refrigerator and returning with the cup.  This cannot be helpfully expressed 

geometrically, but the kind of sequential planning used, though arithmetical, belongs 

rather in topology.  (p. 197) 

That is, the problem is concerned with connectedness.   And, topology is used frequently 

in everyday life:   

Most descriptions of an objects location are topological, rather than 

geometrical:  The coat is in your closet; the school is the fourth house beyond the 

intersection of this street and Route 32; The Pen of my Aunt is in the Garden.   

Again, these problems are concerned with connectedness.  The value of topology to 

behavioral theorizing is seen in the importance of the multitude of components in a 

behavioral system that are connected, and the importance of the kinds of connectedness.   

 

Topology and Behavioral (Intentional Systems) Theory 

The value of theory in general, and behavioral theory in particular, is that theory 

provides a means of predicting outcomes.  To date, behavioral sciences have had to rely 

on empirical testing to arrive at predictive assertions.  That is, given a hypothesis, 

experiments must be conducted in order to verify the hypothesis.   

The difficulty with all such testing and any conclusions derived therefrom is that 

they are dependent upon statistical measures that are only group-predictive, and not 

individually-predictive.  A further and perhaps far more important difficulty is that when 

considering hypotheses, there is no assurance that different hypotheses actually have the 

same basic assumptions; and, in fact, they probably do not.  Without the same basic 

assumptions for two different hypotheses, they cannot be incorporated into the same 

theory.  This problem persists even for hypotheses that are designed to study the same or 

similar types of events.  In fact, many times hypotheses are revisited in order to refute the 

findings of one as opposed to another by claiming that the very foundations of the 

hypotheses compromised the study.   

                                                           
18 Barr, Stephen, Experiments in Topology, Dover Publications, 1989.   
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However, by analyzing the structure of the behavioral (intentional) system, 

conclusions; that is, predictions can be obtained from a parametric analysis of the system 

(see footnote 7).   

 

 

An added value to this type of analysis is that predictions relating to intentional 

systems can be made from their nonempirical structural parameters.19  In fact, this is the 

only feasible way to ever analyze an intentional system with any assurance of the reliability 

of any outcomes.  The reason is due to the very large number of structures contained in 

even the smallest behavioral system.  ATIS generates thousands of theorems which, when 

applied to specific intentional systems, will result in millions of possible hypotheses (that 

is, theorems) being generated.   

Analyzing these systems by means of a parametric analysis of their nonempirical 

structural parameters appears to be the only reliable avenue to ever achieving the 

predictive results desired.   

Further, it then becomes possible to evaluate a particular intentional system by first 

evaluating a formal system that is homeomorphic to the behavioral system. 20   Any 

topological invariants will be the same for both systems, thus eliminating the necessity of 

conducting empirical tests for each and every distinct behavioral system.  If they are 

homeomorphic, predictions can be made from the formal system about the empirical 

system.   

 

 

                                                           
19  Nonempirical Structural Parameters, NeSPs, are discussed in a separate report—QSARs, QSPRs, and their 

relevance to ATIS.  It is intended that this report will soon be published at some time in 2015.   
 
20 See ATIS Properties:  Morphisms.   

 

Parametric analysis is the analyzing of hypotheses of a theory based only upon its parameters. 

http://educology.indiana.edu/Thompson/ATIS%20PROPERTIES,%20Morphisms.pdf


ATIS Historical Foundations, Theory Development Updates & ATIS-Analyses         Page 15 of 44 

 

© Copyright 1996 to 2015 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author.

 

Primary Basic Properties 

The Basic Properties define the attributes required for General Systems Theory.  

They are basic to the concept of a General System, G.  The first property, group, defines the 

(component-) object-set, GO, of a system.21   

 

Group, GO, =df A set with at least two components within the universe of discourse.   

GO =df {x| xWU }  |W| > 1 

 

In this definition, ‘U’ is the universe of discourse, ‘W’ is an object-set, and 

|W| is the set-cardinality function.   

 

As the initial intent of this research is to be able to analyze complex intentional 

systems with a multitude of elements, various types of elements, and numerous types of 

connectedness, an effective process must be established to identify those elements, the 

elements of GO.  Further, as a General System will be analyzed as a topology, the 

topological relation-set will be introduced.   

Although ‘General System’ has not yet been defined, ‘group’ is defined in 

anticipation of its future use as the General System Object Set, GO.  Although, at this point, 

it is nothing more than a “group,” its construction is defined so as to be applicable to a 

General System.   

In order to obtain precise property and affect relations’ definitions, the object-set 

must be precisely defined.  The General System Object-Set, GO, Construction Decision 

Procedure is defined below.   

 

 

 

 

 

                                                           
21 In addition to the object-set, the relation-set and affect-relation-qualifiers are also Basic Properties.  These will be 

defined as appropriate.   

 

http://www.indiana.edu/~aptac/glossary/atisBasicProperties.pdf
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Now that the object-set has been determined, the concept of system must be 

established.    

 

General System Object-Set, GO, Construction Decision Procedure 

The logical construction of the General System Object-Set, GO, will be determined 

as follows:   

1) Every Information Base (ĪB) defines affect relations, AnA, by the unary- and 

binary-component-derived sets from the ĪB.  That is, the components of An are of 

the form:  {{xi},{xi,yi}}  AiAn that indicates that an “affect relation” has been 

empirically determined to exist from “xi” to “yi.”   

2) However, in order to even determine the affect relations, the qualifiers that specify 

the affect relations must be established.  Very simply, what is the nature of the 

system being considered?  To define the system, the affect relations must be known, 

and those are defined by the system qualifiers, the predicates that define the affect 

relations; and, therefore, the components of the system.   

The Affect Relation Qualifiers Set, Q must be defined before any affect relations, 

and, therefore, any components can even be recognized.  These are the predicates 

that define which affect relations will be considered for system inclusion.   

3) The following functions,  and , define elements of a topology, n, that will allow 

for analysis of an affect relation.  That is, ,:Ann, such that:   

   Ai = {xi}n; and Ai = {xi,yi}n. 

An additional function, , will also be required for certain properties, and will allow 

for specification of specific elements, as follows:   

   Ai = yi.   

Hence, the elements of GO can be specified by  and   .   

4) The set of initial elements of GO will be defined by an existing ĪB as follows:   

GO = {x| i(x(Ai  Ai)  AiAn}.   

5) New elements will be added to GO by Rule 3) when the new element establishes an 

affect-connected relation with an existing element in GO so that it is an element of an 

AiAn.   

6) No other objects will be considered as elements of GO except as they are generated 

in accordance with Rules 1) to 4).    
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System 

There are various definitions of ‘system’ in the literature.22  A Mesarović system is 

frequently used and it relates to the traditional concept of what a system “should” be; that 

is, it consists of related components.  In this definition, a system is a relation on non-empty 

sets:   

S  {Vi:iI}; where ‘I’ is an index set. 

Lin extends the Mesarović definition so that multiple relations with a varying 

number of variables may be defined without having to change the object set, and defines a 

‘system’, A, more conventionally as an ordered pair consisting of an object set, M, and a 

relation set, F:   

A = (M,F). 

Steiner and Maccia followed this convention and defined ‘system’ as follows:   

System, S, =df A group with at least one affect relation that has information. 

S =df (S, R) = (SO, S); where S = SO and R = S.   

A system is an ordered pair defined by an object-set, S or SO, and a 

relation-set, R or S. 

 

In this research, the definition of system will be extended to more adequately 

account for all system parameters.  This extension will more clearly define the topology 

and/or relatedness of a system by its object-sets and relation-sets; as well as allow for a 

more rigorous and comprehensive development of the system logic required for a logical 

analysis utilizing the Predicate Calculus and other required logics.   

 A General System is defined within a Universe of Discourse, U, that includes the 

system and its environment.  The only thing that demarcates the systems under 

consideration is the “Universe of Discourse.”  And, while that universe may be somewhat 

fuzzy or rough, whatever systems are being considered will be well defined.  In the case of 

Education Systems, the boundary of the universe may be quite fluid, or possibly unknown, 

especially with respect to the object-sets.   

U is partitioned into two disjoint systems, S and S’.  Therefore, Universe of 

Discourse has the following property:   

                                                           
22 See System.   

 

http://www.indiana.edu/~aptac/glossary/atisSystem.pdf
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U = S  S’; such that, S  S’ = .   

The disjoint systems of U, S and S’, are defined as “system” and “negasystem,” 

respectively.   

System environment and negasystem environment are defined as follows:   

System environment, S’, =df The system’s corresponding negasystem, S’.   

Negasystem environment, S, =df The negasystem’s corresponding system, S.   

 
 

General System 

A General System, G, is defined by the following parameters:   

1) Family of Affect Relations Set, A ;  

2) Affect Relation Qualifiers Set, Q; 

3) Component Partitioning Set, P ;  

4) Transition Function Set, T ;  

5) Linearly Ordered Time Set, T; and  

6) System State-Transition Function, .   

 

That is:   

General System (G) =df a set of affect-relations (A) defined by 

affect-relation-qualifiers (Q), which determine a set of partitioned components (P), 

a transition functions set (T), a linearly-ordered time set (), and a state-transition 

function (σ).   That is:   

G = df (A, Q, P, T, , )  

 This definition is more accurately defined as follows:   

G =df [A|Q ⊩ (P (T, , ))];23  

That is, General System, G, is defined as the Affect-Relations Set, A, given the 

Affect-Relation Qualifier Set, Q, which determine the Component Partitioning Set, 

P, explicated by the Transition Functions Set, T, the Linearly-Ordered Time Set, , 

and the State-Transition Function, .   

                                                           
23 ‘⊩’ is read “determines” or “which determine” or “from which is/are derived”, as appropriate for the sentence in 

which it is used.  This symbol is similar in intent to the logical “yields”, but whereas “yields” is a logical relation for a 

deductive proof, this is a predicate relation identifying that which is derived from the existent set.  This definition is 

used as it emphasizes the fact that no system can be recognized without first knowing the affect-relations as defined by 

the qualifying predicates.  If no affect relation is recognizable, then no components can even be found.   

 

http://www.indiana.edu/~aptac/glossary/atisSystem.pdf
http://www.indiana.edu/~aptac/glossary/atisNegasystem.pdf
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The sets that define G have the following elements:   

A1, A2, …, An  A; and  

TP, IP, FP, OP, SP, SBO, S’BO  P ;  

L, L ’  Q ; 

fI, fO, fT, fB, fS, fN, fE  T ;  

t1, t2, …, tk  T.   

Let the object-set of a General System, GO, be such that GO = SO  S’O; where SO and 

S’O are the object-sets of S and S’, respectively.  Then, GO is defined by the following:   

GO = df SO  S’O = (IP  FP  SP  SBO)  (TP  OP  S’BO) 

Further, as all of these sets are disjoint, the following holds:   

IP  FP  SP  SBO  TP  OP  S’BO =  .   

 

TP, IP, FP, OP, SP, L, L ’, SBO, and S’BO represent the following sets:   

  ‘TP’ represents “toput.”     

‘IP’ represents “input.”   

‘FP’ represents “fromput.”     

‘OP’ represents “output.”   

‘SP’ represents “storeput.”   

‘L ’ represents “system logisticians” or “system qualifiers.”   

‘L ’’ represents “negasystem logisticians” or “negasystem qualifiers.”   

‘SBO’ represents “system background components.”   

‘S’BO’ represents “negasystem background components.”   

 

In view of the foregoing, the system object-set, SO, and negasystem object-set, S’O, 

are defined as follows:   

SO =df IP  FP  SP  L  SBO; and  

S’O =df TP  OP  L ’  S’BO.    
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Corollary:   

SBO = SO \ (IP  FP  SP); and S’BO = S’O \ (TP  OP). 

Background Components may arise when the object-set is fuzzy or rough (see fuzzy 

set theory or rough set theory); that is, not all components are specifically known, but it is 

known that such components exist.  For example, you may know that there are over 10,000 

people in a particular town, but you do not know who they all are.   

Now that the object-sets have been defined, the relation-sets must be defined.   

Transition functions give the system dynamics.  These are the functions that are 

operated on by the System State-Transition Function, , so as to change the system 

structure and thereby the “behavior” of the system.   

System behavior is defined as a sequence of system states.   

A consistent pattern of system states defines System Dispositional Behavior.   

The transition functions required for state-transition analysis are described as 

follows:  fI, fO, fT, fB, fS, fN, fE are the transition function-sets and represent the following 

functions:   

‘I’ is “feedin.”    ‘O’ is “feedout.”    ‘T’ is “feedthrough.”   

‘B’ is “feedback.”         ‘S’ is “feedstore.”         ‘N’ is “feedintra.”         

‘E’ is “feedenviron.”   

 

 

Affect Relations 

Affect relations determine the structure of the system by the connectedness of the 

components.  A1, A2, …, An are the affect relation-sets of G.  These sets are elements of 

the family of affect relations, A.  These sets define each subsystem of G.  For example, a 

T/I-put interface system will be defined as:  T/I =df TP  IP, and is defined by the affect 

relations that define the feedin function, fI, that results in the input resulting from a System 

State-Transition of toput into the system, S.  For example, this subsystem may have three 

affect relations, A1, A2, and A3, that will generate the transition functions, fI.  That is:   

fI(1)  A1, fI(2)  A2, and fI(3)  A3. 

http://en.wikipedia.org/wiki/Fuzzy_set
http://en.wikipedia.org/wiki/Fuzzy_set
http://en.wikipedia.org/wiki/Rough_set
http://www.indiana.edu/~aptac/glossary/atisDispositionalBehavior.pdf
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Then, the System State-Transition Function, , operating on the transition functions, f, 
“move” the qualified components from S’ to S for each type of affect relation.   

 Steiner and Maccia define affect relation as follows:   

 

Affect relation, A, =df  

A connection of one or more components to one or more other components.   

A = df {{{x},{x,y}}| P(x,y)|Q  x,y X  GO  [(x = U  X  GO  y = V Y  GO)]}   

Affect relations define the connectedness of the system.24   

In the current research, affect relation, as defined below, is a binary-relation of the 

form {{x},{x,y}} as empirically derived from an ĪB (information base).  If the direction of the 

affect relation is unknown, then both {{x},{x,y}} and {{y},{x,y}} will be included in the 

affect relation set.   

This definition of affect relation is comparable to a Mesarović system, which is 

consistent with the current development since each relation defines a Mesarović system.  

Further, Mesarović refers to such systems as “input-output” systems, where  

X =  {Vi| iIX}, the “inputs”; Y =  {Vi| iIY}, the “outputs”; and 

{IX, IY} is a partition of the index set, I.  Since X  Y = , the partition condition is 

satisfied.  Now, this definition can be written to look very similar to that intended by 

Steiner and Maccia; that is:   

A  X Y = {(x,y)| x  X  yY} 

And, from this, the family of affect relations can be obtained, such that:  ∀n(AnA).   

As with the object-set, an effective procedure must be established for determining 

the elements of the affect relations.  The Affect Relation-Set, GA , Construction Decision 

Procedure is such an effective procedure and is given below.   

 

 

 

                                                           
24 To be accurate, any predicate, P, should be defined as being derived from the affect-relation-qualifier set, Q ; 

however, such will be assumed unless stated otherwise.  That is, P(x,y)|Q, (P(x,y) given Q) will simply be written as 

P(x,y).   
 



ATIS Historical Foundations, Theory Development Updates & ATIS-Analyses         Page 22 of 44 

 

© Copyright 1996 to 2015 by Kenneth R. Thompson, System-Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By convention, {{x},{x,y}}  (x,y)  (x,y), where the latter can be used if there is no 

confusion concerning direction of the relation.     

 

 

Affect Relation-Set, GA, Construction Decision Procedure 

The logical construction of the affect relation-set, GA, will be determined as 

follows:   

1) Affect Relation-Set Predicate Schemas, Pn(xn,yn)|Qn = Pn(An), are defined as 

required to empirically define the family of affect-relations, AnA, as 

extensions of the predicate schemas.  The elements of An are of the form 

{{x},{x,y}} that indicates that an “affect relation” has been empirically 

determined to exist from “x” to “y.”  ‘Pn(An)’ designates the predicate that 

defines the elements of An as derived from the predicate-qualifier Qn.  

 

2) The Affect-Relation Transition Function, n, is defined by:   

 n: X Y  An | X, Y  ĪB .. n(X Y) =  

{{{xn},{xn,yn}}| Pn(An)  xnX  ynY}.       

 

3) The family of affect relations, A = GA, is defined recursively by applications 

of the function in 2) for all elements in ĪB to each Pn(An) defined in 1).   

 

4) New components are evaluated for each Pn(An) defined in 1) and included in 

the appropriate extension when the value is “true”.   

 

5) No other objects will be considered as elements of AnA = GA except as 

they are generated in accordance with rules 1) through 4).   
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Transition Functions 

The transition functions will now be defined in a manner to allow for temporal 

analysis of the system.   

 

 

Feed-Function Schema.  The “feed-” functions, fF; that is, fI, fO, fT, fB, fS, fN, and fE, are 

defined as follows:   

fF: Xp  Yp | fF(x) = y.   

Xp and Yp are the corresponding “-put” sets defined for each function.  For example,  

fI: Tp Ip | fI(x) = y defines the movement of toput components to input components.   

 

-Put Set Schema.  For all of the “–put” sets, P; that is, TP, IP, FP, OP, and SP, a time 

function, (x)fF(t), is defined from the product set of a “-put” set, fF, and a time set into the 

real numbers, R.   

(x)fF(t): fFT  R = A    

For example, TP (t): TPT  R = A; that is, A is the APT-value of TP at time t.   

To determine the temporal transitions of components, an APT-Analysis is performed with 

respect to the components of an affect relation such that:  fF(x) = A; where A is the APT 

value.  When A is greater-than or equal-to a predetermined value, or is 0, then component x 

has “moved” to the target set as y; that is, fF(x) = y.  That is:  

∃A [fF(xXp) = A | A = 0  A > α ⊃ fF(x) = yYp]  

 

State-Transition Function Schema.  Then the state-transition function, , is defined 

by the following composition:   

x(fF(x)  (x)fF(t)) =  = 0  x fF(xXp) = yYp.   
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Descriptive Analysis of General Systems 

The descriptive analysis of an empirical system will be accomplished by using an 

APT Analysis developed by Frick.  Further, the direct approach taken by an APT Analysis 

makes it readily applicable to a computer-based analysis of an ĪB.   Frick describes the 

process as follows:   

Analysis of patterns in time (APT) is a method for gathering information about 

observable phenomena such that probabilities of temporal patterns of events can be 

estimated empirically.  [With an appropriate analysis] temporal patterns can be predicted 

from APT results.   

The task of an observer who is creating an APT score [since renamed 'temporal 

map’]25 is to characterize simultaneously the state of each classification as events relevant 

to the classifications change over time.   

An APT score ['temporal map’] is an observational record.  In APT, a score 

['temporal map’] is the temporal configuration of observed events characterized by 

categories in classifications.   

[This contrasts significantly from the linear models approach (LMA) common to 

most research.]  The worldview in the LMA is that we measure variables separately and 

then attempt to characterize their relationship with an appropriate mathematical model, 

where, in general, variable Y is some function of X.  A mathematical equation is used to 

express the relation.  In essence, the relation is modeled by a line surface, whether straight 

or curved, in n-dimensional space.  When such linear relations exist among variables, then 

a mathematical equation with estimates of parameters is a very elegant and parsimonious 

way to express the relation.   

In APT, the view of a relation is quite different.  First, a relation occurs in time.  A 

relation is viewed as a set of temporal patterns, not as a line surface in n-dimensional space.  

A relation is measured in APT by simply counting occurrences of relevant temporal 

patterns and aggregating the durations of the patterns.  This may seem rather simplistic to 

those accustomed to the LMA, but Kendall (1973) notes,  

“Before proceeding to the more advanced methods, however, we may recall 

that in some cases forecasting can be successfully carried out merely by watching 

the phenomena of interest approach.  Nor should we despise these simple-minded 

methods in the behavioral sciences.”   

                                                           
25 While temporal information obtained from observing a particular system was initially referred to as an APT ‘score’ 

(e.g., Frick, 1990), the nomenclature was later changed to ‘temporal map’ as MAPSAT was further developed.  See, 

for example:  https://www.indiana.edu/~tedfrick/MAPSATAECTOrlando2008.pdf, and 

http://educology.indiana.edu/affectRelationTemporal.html.  This was necessary, since the most common meaning of 

‘score’ is that of a number, such as the score in an athletic event or game.  Frick was, however, using ‘score’ in the 

sense of a musical score that consisted of a temporal description of music by notation on staffs for musicians to follow, 

e.g., to play Beethoven’s 3rd Symphony.  Each musical ‘score' is not a number; rather it is a configuration or map 

which is unique.  Such a configuration is indexical and represents something unique; see for example:   

http://educology.indiana.edu/sign.html.  Further, the musical map (score) for Beethoven’s 3rd Symphony is different 

from his 9th or his 5th symphonies.  In addition, the distinction in MAPSAT between temporal maps and structural 

maps is consistent with the discussion of dynamic and structural properties of a given system. 

 

https://www.indiana.edu/~tedfrick/apt/aerj.pdf
https://www.indiana.edu/~tedfrick/MAPSATAECTOrlando2008.pdf
http://educology.indiana.edu/affectRelationTemporal.html
http://educology.indiana.edu/sign.html
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For this research, APT Analysis lends itself quite readily to establishing patterns that 

indicate new objects and relations that should be added to the system.  System state will be 

defined by system properties.  System properties will be defined by the connectedness of 

the system components; which defines the system structure.   

The most direct way to define the structure required is by utilizing graph-theoretic 

properties.  These properties will be defined as required for the further development of 

ATIS.   
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Affect Relation Properties, xA 

Affect Relation Properties will be defined in terms of path-connected elements, pcE.  

The properties are defined in set-theoretic terms so that they can be used to define a 

topology.   

Therefore, before proceeding with the definitions of Affect Relation Properties, the 

relevant Graph Theoretic Properties will be presented.26   

 

Graph-Theoretic Connected Properties (Elements), xE 

Path-connected elements, pcE, =df   

{(x,y)| (x = x0, x1, x2, ... xn-1, xn = y)  (xi,yi)i<n[yi = xi+1]} 

Path-connectedness is intuitively defined as the ability to get from one 

element to another by following a sequence of elements.  The connected paths are 

“channels,” in terms of information theory, or “communications” between the 

elements of a system, or affect relations.  These are graph-theoretic properties that 

will be used to define system properties.   

 

Discrete segment, |(x,y)n=1| = 1, =df A path between two and only two elements.   

|(x,y)n=1| = 1  {(x,y) | (x = x0,y = x1)}.   

 

Segment cardinality, |(x,y)n| = n, =df The number of discrete segments between 

elements.   

|(x,y)n| = n  {(x,y) | (x = x0,y = xn)}.   

 

The following graph depicts the path-connectedness of elements a, b, c, d, and e; and 

the path-connectedness of subsets, A, B, C, D, and E.   

                                                           
26  For a more thorough discussion of graph theory for ATIS, go to ATIS Graph Theory, and ATIS:  Connected 
Components and Affect Relations.   
 

https://www.indiana.edu/~aptfrick/overview/reports/11ATISgraphtheory.pdf
http://educology.indiana.edu/Thompson/ATIS--Connected%20Components%20and%20Affect%20Relations.pdf
http://educology.indiana.edu/Thompson/ATIS--Connected%20Components%20and%20Affect%20Relations.pdf
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 a       e 
 b    

 c     d  

 
 

A   

       B             C   
 
   

  

       E      D 

 

 

The following diagram and symbol conventions will be used to clarify and define 

the graph-theoretic properties.   

Arrows (,,)   will be used to show direction of an affect relation between 

elements of a system.   

‘(p,q)’ designates the connected elements p and q.   

‘p q designates the ordered pair path-connected elements from p to q.   

The following diagram, in addition to helping to clarify the connectedness 

properties, will also be used to introduce terminology that is useful for describing 

connectedness.   

 

 
   a   d    

 
        g  j 
 
     b 
 
       c 
  e 
 
           f 
    h 
          i 
 

Diagram of Directed Component Connectedness 

The following component 

path-connections are 

depicted:  (a,c), (c,a), 

(e,c), (e,a), (d,b).   

The following subset 

path-connections are 

depicted:  (E,B), (E,C), 

and (E,D).   

The following component 

and subset 

path-connections are 

depicted:  (a,B), (C,e), 

(C,c), (C,a), (e,B), 

(E,e), (E,c), (E,a).   
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 The following list is presented to facilitate the understanding of the various 

connectedness relationships.  From the above graph, the following relations are 

determined:   

 
Path-connected elements:   

 (a,b), (b,a), (a,c), (a,d), (b,c), (b,d), (c,d), (e,d), (e,f), (f,d), (f,e), (f,g), and (i,j).   

Path-connected elements with three segments:  (a,d).     

Completely connected elements:  (a,b) and (e,f).    

Unilaterally connected elements:  (a,c), (a,d), (b,c), (b,d), (e,d), (e,g), (f,g), and (i,j).   

Disconnected elements:  (a, h), (h, j), all h-pairs of elements, and all i and j pairs except for (i,j).   

Receiving elements:  a, b, c, d, e, f, g, and j.     

Initiating elements:  a, b, c, e, f, and i.   

Primary initiating elements:  i; that is, it initiates, but does not receive.   

 h may be considered as a trivial primary initiating element.   

Terminating elements:  d, g, and j.     

 h may be considered as a trivial terminating element.   

 All terminating elements must be unilaterally terminating elements.   

Connected but not path-connected elements:  (a,e), (a,f), (a,g), (b,e), (b,f), (b,g), (c,e), (c,f), and 

(c,g).   

 

 The terms described above will be formally defined below.  Path-connected 

elements will be restated so as to bring all of the graph-theoretic properties together in one 

listing.   

 

Path-connected elements, pcE,  =df {(x,y)| (x = x0, x1, x2, ... xn-1, xn = y)  (xi,yi)i<n[yi = xi+1]} 

Completely connected elements, 
cc

E, =df {(x,y)| (x,y)[(x,y), (y,x)pcE]} 

Unilaterally connected elements, 
uc

E, =df {(x,y)| (x,y)[(x,y)pcE.. (y,x)pcE]} 

Disconnected elements, 
d
E, =df {x| (x,y)[(x,y),(y,x)pcE]} 

Initiating elements, 
i
E, =df {x| x[(x,y)pcE]} 
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Receiving elements, 
r
E, =df {y| y[(x,y) pcE]} 

Terminating elements, 
t
E, =df {y|y[(x,y)pcE  u(y,u)pcE}

Primary initiating elements, 
pi

E, =df {x| y[(x,y)pcEu(u,x)pcE} 

Connected elements, cE, =df {(x,y)| y((x,y)pcE  (y,x)pcE} 

 

The distinction must be made between component properties and system 

properties.   

Component properties describe relations between components; for example, that 

two components are unilaterally connected.   

System properties describe the characteristic pattern of all components of the 

system with respect to a specific component property; for example, the unilateral 

connections of the system components are such that the system is characterized by 

strongness.   
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In view of the above Graph Theoretic developments, the Affect Relation Properties 

can now be defined.  To bring all of the Affect Relation Properties together, affect relation 

will again be defined.   

 

Affect relation, A, =df A connection of one or more components to one or more other 

components.   

A = df {{{x},{x,y}}| P(x,y)  x,yX  GO  [(x = U  X  GO  y = V Y  GO)]   

 

Directed affect relation, dA, =df An affect relation that is path-connected.   

dA =df A | (x,y)A   (x,y)pcE}.   

 Directed affect relations may pass through more than one component.  

Directed affect relations, when also assigned a “magnitude” will be interpreted as 

a vector that will allow for topological analyses of the system vector fields.   

 

Direct directed affect relation, ddA, =df A directed affect relation with a single 

directed-path.   

ddA =df {(x,y) | (x,y)n=1AmA }.   

 

Indirect directed affect relation, idA, =df  

A directed affect relation in which the path-connection is through other components.   

idA =df {(x,y) | (x,y)n>1 AmA }.   

 

Connected affect relation, cA, =df  

Connected components of an affect relation irrespective of direction of 

path-connectedness.     

cA =df {(x,y) | (x,y)  AmA.  (y,x)  AmA }.   

 

Connected affect relations may be used to analyze a system in terms of its total 

connectedness to determine potential behaviors under varying assumptions of 

connectedness.   
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Information-Theoretic Properties 
 

 

Information obtained from an Information Base, ĪB, will be analyzed to determine 

various affect relations.  An APT Analysis will provide a sequence of system states that 

may be used to define various Dispositional Behaviors, DB’s.  Further, the ĪB will be used 

to construct an Extended-ĪB that will be used to make predictions concerning system 

behavior.  The Extended-ĪB is constructed using the Behavior-Predictive Algorithm (the 

Phoenix Algorithm) developed by Raven58 Technologies.     

Information is made explicit for analysis by the use of mathematical probabilities.  

Probabilities define information.  And, the probabilities used do not have to be “true”; 

they only have to lend themselves to a proper analysis of the system and its outcomes—its 

predictions.   

In ATIS, the probabilistic definition of information is mitigated by the fact that 

behavioral predictions are not founded on the information, but on a structural analysis of 

the system derived from that information.  That is, behavior prediction made possible by 

ATIS is dependent on logical and topological analyses rather than on the specific 

information input itself.  Information for ATIS is used to determine system structure and is 

not the decision-making tool.  

Further, information as used in ATIS is discrete.  As the information “H” function is 

defined below, ATIS only uses a few discrete values of “H,” normally equal to “0” or “not 

0.”    

For example, input occurs when the value of “H” in the toput is such that H = 0.  If 

“H” is anything other than 0, then the component is still toput, regardless of whether H = 

0.1, H = 0.2, H = 0.7, etc.  However, various analyses of H will be used to construct the 

Extended-ĪB.  That is, the value of H will determine the category assigned a new system 

component so that the new system structure may be determined and analyzed.   

Information is that which reduces uncertainty.  In information theory, 

uncertainty is defined by a value, H, the entropy.  Uncertainty is a measure of variety 

such that uncertainty, H, is zero when all elements are in the same category.   

 

 

Information is defined as follows:   

 

 

http://www.indiana.edu/~aptac/glossary/atisDispositionalBehavior.pdf
http://educology.indiana.edu/Thompson/Phoenix%20Algorithm.pdf
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Information, p, =df A mathematical probability of occurrences defined by:   

p = df {(c,v)|cW  GO .. v(0,1]}.   

Information is a set of ordered pairs consisting of components, c, of the set 

“W”, a subset of GO, and the real number “v,” which is the probability distribution, 

p, that the component “c” occurs in W.  

 

Information is represented as a probability so as to convey the uncertainty of that 

information.  Thus, information will be the result of an “uncertain event,” and referred to 

below as “event uncertainty.”  Information is a Measure Property.   

 

 

Event uncertainty, H, =df A measure of information due to statistical uncertainty, real 

uncertainty, or enemy action.   

H = -K i=1…n pi log pi; 

where “K” is a constant related to the choice of a unit of measure, and “pi” is the 

probability of occurrence of event “i”.  In ATIS, the information-probability will 

indicate the “reliability” of that information and the resulting assignment to an 

appropriate subset.    

‘Event uncertainty’ is used here to imply probabilities that are subject to 

objective determination.  Further, whereas ‘event uncertainty’ may be defined in 

terms of statistical uncertainty or real uncertainty, the information in this research 

will normally be due to enemy action; that is, tychistic events that must be dealt with 

in the continuity of a behavioral system, the society.   

 

Non-conditional event uncertainty, ncH, =df  

Information that does not depend on other event uncertainty.   

ncH =df H | ~H1(H: H1) 

 

Conditional event uncertainty, cH, =df Information that depends on other event 

uncertainty.   

cH =df H: H1(H: H1) 
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MATHEMATICAL  TOPOLOGY  &   

BEHAVIORAL  (Intentional Systems)  THEORY 

In this study, we will not be considering the study of topology, but will be 

considering the application of topology to behavioral theory.  The applicability of topology 

to behavioral theory is suggested by Klaus Jänich in his text Topology27 at page 2:   

“... the application of point-set topology to everyday uses in other fields is 

based not so much on deep theorems as on the unifying and simplifying 

power of its system of notions and of its felicitous terminology.”   

It is this “unifying and simplifying power” that we will develop for intentional 

systems theory.  Following this development, the full power of mathematical topology in 

terms of its analytic tools and theorems will depend upon the intentional systems involved 

and the creativity of the analyst.  Specific applications will be suggested throughout this 

development, and a constructive approach to analyzing behavioral topological spaces will 

be presented.  Various definitions and theorems will be presented just to indicate what 

topological analyses may be of value in analyzing specific intentional systems.   

 

Topologies  and  Topological  Spaces 

There are a number of ways that a topological space can be defined.  The one 

chosen herein was selected due to its potential for properly evaluating the desired concepts 

of the intentional systems theory.   

Topology is the study of those properties of a system that endure when the system is 

subjected to topological transformations.  This introduces the initial rationale for 

interpreting the structural properties as a topology—to be able to analyze properties of a 

system in a manner that can distinguish between substantive and non-substantive 

distinctions.  Having initiated this interpretation, however, it may be seen that other 

interesting and beneficial evaluations will arise.   

A topological transformation is a continuous transformation that has a continuous 

inverse transformation.  That is, a topological transformation is a continuous 

transformation that can be continuously reversed or undone.  Two systems are 

topologically equivalent if there is a topological transformation between them.   

Thus, the tools are available to determine whether or not two intentional systems are 

in fact substantively different, or if they only appear to be different due to our vision being 

determined by geometric perspectives.  That is, things are normally differentiated 

“geometrically,” whereas differentiating them topologically will get at their substantive 

distinctions.  That is, normally distinctions may be “seen” where in fact there are none.   

                                                           
27 Jänich, Klaus, Topology, Springer, 1995.   

 

http://de.wikipedia.org/wiki/Klaus_J%C3%A4nich
http://mathworld.wolfram.com/TopologicalSpace.html
http://mathworld.wolfram.com/Topology.html
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A topological property; i.e., topological invariant, of a system is a property 

possessed alike by the system and all its topological equivalents.  A topological invariant 

always carries information concerning one or more topological properties.   

Topological space and topology are defined as follows.   

 

Definition: Topological Space and Topology.   

 T = (S
x
,) is a topological space, where S

x
 is a set of points and , the topology, is 

a class of subsets of S
x
, called open-neighborhoods, such that:   

 (1) Every point of S
x
 is in some open-neighborhood, N

i
, iI 

+
, the set of positive 

integers;  

 (2) The intersection of any two open-neighborhoods of a point contains an  

   open-neighborhood of that point; and  

 (3) S
x
 and  are elements of .   

 

 Formally:   

  = {N
i
| N

i
  S

x
 iI 

+
  x S

x
N

i
(xN

i
  (xN

j
  xN

k
 N

i
(xN

i
 N

j
 N

k
}  

{S
x
,}.   

 

 

That is,  is the topology that consists of open-neighborhood sets, N
i
, of S

x
 such 

that every point of S
x
 is in some N

i
, and the intersection of any two neighborhoods of a 

point of S
x
 contains a neighborhood of that point, and S

x
 and  are elements of .   

 

 

 

 

 

Properties  of  Topological  Spaces   

for  an  Intentional  Systems  Theory 

It is proposed that the following properties of topological spaces will be useful in 

analyzing intentional systems.  Where appropriate, especially for vector fields, these 

properties are defined specifically for the intentional systems theory.   
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Definition.    Open Sets.   

  T is a topological space, (S
x
,).  The elements of  are open sets.   

 

Definition.    Neighborhood of a Point.   

  The set, N, is a neighborhood of a point, p, if:  (1)  pN ; and (2)  N is open.   

 

 

Definition.    Near (Point-to-Set).   

   T is a topological space, (S
x
,).  Let S S

x
 and xS.  u is near S, xS, if 

every neighborhood of x contains an element of S.   

 

Definition.    Let T = (S
x
,).  Let S S

x
.  Then:   

 

 Path.   
 Any set topologically equivalent to the line segment [0,1].   

 Closed Path or Jordan Curve.   
 Any set topologically equivalent to the circle, [P] = 1.   

 Closed.   
 S is closed if it contains all its near points.   

 That is, there are no neighborhoods other than S that contain the elements of S.   

 Open.   
 S is open if every element in S is not near the complement of S, S’.   

 That is, there are no neighborhoods for the elements of A which contain elements of S’.   

 Clopen.   

 S is clopen if it is both open and closed.  [S
x
 and  are always clopen in a topology.]   

 Connected.   
 S is connected if for every nonempty disjoint partition of S, U and V, one partition 

contains an element near the other.   

 

 

 

Theorem: Paths are connected.   

 

 

Following are additional topological properties that will be of value in analyzing 

various intentional systems.   
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Definitions:    Let T = (S
x
,).  Let S  S

x
.  Then:   

 

 Interior Point.   

 x S
x
 is an interior point of S if S is a neighborhood of x.   

 

 Exterior Point.   

 x S
x
 is an exterior point of S if S’ is a neighborhood of x.   

 

 Boundary Point.   

 x S
x
 is a boundary point of S if neither S nor S’ is a neighborhood of x.   

 

 Set Interior.   

 If S
o
 is the set of interior points of S, then S

o
 is the interior of S.   

 

 Set Closure.   

 If S
-
 is the set of points of S which are not exterior points, then S

-
 is the closure of S.   

 That is, S
-
 is the set of interior and boundary points of S.   

 

 

Definition:  Disjoint Union (Sum) of Sets.   

  Let X + Y = X  {0}  Y  {1}, then X + Y is the disjoint union or sum of 

X and Y.   

  By this definition we obtain a copy of X and Y individually, rather than their 

union.   

With the following definition, we can obtain a new topology from two given 

topologies as follows.   

 

Definition:  Disjoint Union (Sum) of Topological Spaces.   

  If (X,t) and (Y,t*) are topological spaces, then a new topology on X + Y ,t**, is 

given by:   

 

   t** = {U + V|Utand Vt*},  

 

  and (X +Y ,t**) is called the topological disjoint union of the topological 

spaces X and Y.   
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This may prove fruitful when considering different topologies within the same 

behavioral system, or when trying to join two different systems.   

We will now consider the definition of a product topology.  The generalization of 

this definition will require the following definition of product set.   

 

 

Definition:  Product Set.   

  Let {X
i
|iI

+
} be a family of sets.   

[NOTE:  I
+
 may be replaced with a finite index set, and will generally be 

done so with a particular intentional system.]   
 

  Then,  

    X
I
 + X

i
  = {(x

1
,x

2
,...,x

i
,...)|iI

+
 x

i
X

i
 )} 

  If  x = (x
1
,x

2
,...,x

i
,...)  X

I
 + X

i
 , then,  

   x
i
 is called the i-th coordinate of x;  

   X
i
 is called the i-th component of X

I
 + X

i
 ; and  

   X
I
 + X

i
  is called the product set of the sets {X

i
 |iI

+
} 

 

 

Definition:  Product Topology.   

  If (X,t) and (Y,t*) are topological spaces, then t** is the product topology of 

X Y  and is given by:   

    t** = {(x,y)|N (x)N (y)(xX  yY  N (x)t  N (y)t*}.   

 

Generalizing this definition, we have the following:   

 

  Let {(X
i
,t

i
)|iI

+
} be a countable family of topological spaces.  Then,  

    t = {X
I
 + X

i
 |iI

+
  x

i
X

i
 N (x

i
)(x

i
X

i
  N (x

i
)t

i
}  

  is the product topology of  X
I
 + X

i
 .   
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Definition:  Continuous.   

  S and T are topological spaces.  A transformation, :S T, is continuous if 

for any point, xS, and subset, AS, xA  (x)(A).   

 

Definition:  Bijective Map.   

  :XY, is a bijective map if  is 1-1 and onto.   

 

Definition: Homeomorphism.   

  :XY, is a homeomorphism if  is bijective and continuous, and 
-1

 is 

continuous.   

 

 

The following connectedness theorems may prove useful when analyzing various 

intentional systems.   

 

Theorem: Continuous Images Maintain Connectedness.   

  If X is a (path-)connected space and :XY is continuous, then (X) of Y is 

also a (path-)connected space.   

 

Theorem: Non-Disjoint Unions Maintain Connectedness.   

  If X
0
 and X

1
 are (path-)connected subspaces of X, X = X

0
  X

1
, and X

0
  X

1
 

, then X is (path-)connected.   

 

Theorem: Products Maintain Connectedness.   

  X
I
 + X

i
  of non-empty topological spaces is (path-)connected if and only if all 

X
i
  are.  
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Topological Vector Fields 

 For the following definitions:  T = (S,t) is a topological space and P,QS.   

 

 

Definition: Direct Affect Relation.   

  A is a direct affect relation from x to y defined by A:P  Q, where xP and 

yQ, such that {x,y}t, and A(x) = y is defined for all x of P.   
 

Definition: Direct Affect Relation Measure.   

  The function, M, defined by M:PQ  R, is a direct affect relation 

measure of the direct affect relation, A, defined by A(x) = y, such that M(x,y) = m.   

 

Definition: Vector.   

  v is a vector from x to y, x  y, if there is a direct affect relation, A, and a 

direct affect relation measure, M, defined for xP and yQ.   

 

Definition: Vector Field.   

  V is a vector field, if V = {(x,y)|xP, yQ, x  y}.   

 

 

 

The value of APT methodologies now becomes quite apparent.  The intentional 

systems theory provides the parametric formulas for analyzing an intentional system.  APT 

provides the means for obtaining the information required to apply these analyses to 

specific intentional systems.   

In particular, APT makes it possible to evaluate the family of Affect Relation 

Vector Fields.  That is, any behavioral system will have numerous vector fields, which 

normally would have to be analyzed individually.  APT provides the means to evaluate 

them simultaneously.  That is, they are viewed in terms of the APT Map.  This should 

prove to be most beneficial when applying the theory to a particular individual or system.  

APT Maps provide the methodologies to make the theory individually predictive or 

system-specific predictive.   

Further, the theory, in terms of either the disjoint union or product of topological 

spaces will provide the theoretical perspective required to assign appropriate parameters to 

the APT Map, and then to analyze the results of that score in terms of their theoretical 

significance.   
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Definition: Fixed Point and Fixed Point Property.   

  Let  be a continuous transformation from X into X, represented by:   

   
1
:XX, 

2
:XX, 

3
:XX, ..., 

i
:XX, ..., 

n
:XX.   

  Then, if there is an xX such that 
1
(x) = 

n
(x) = x, then x is called a fixed 

point of .  If for every , X has a fixed point, then X has the fixed-point property.   

 

 

Theorem: Brouwer’s Fixed Point Theorem.   

  Cells have the fixed-point property.   

 

 

Definition: Self-Similar.   

  A system that is homeomorphic to any subset of the system.   
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Constructive Development of a  

Topology for an Intentional System 

In order to consistently analyze intentional systems, a “Construction Rule” will be 

developed that will generate a topology in the same manner for every system analyzed.   

 

 

Topology Construction Rule:   

 (1) Every element of the system is contained in a neighborhood consisting of one 

element, and are designated as the family of null-affect neighborhoods, A0.   

 (2) Every element of the system is classified by type and is assigned to the 

neighborhood containing just elements so classified.  All such neighborhoods are 

designated as the family of descriptive neighborhoods, D0.   

 (3) All elements with affect relations between them are pair-wise assigned to a 

neighborhood containing just those two elements, and are designated as a family of affect 

relations by type; that is, A1, A2, A3, etc.   

 (4) The system and the null set are elements of the topology.   

 

 

Now, let’s see how this works.   

Let S = {A1, A2, T1, T2, T3, S1, S2, S3, S4, S5, S6}; where “A” represents “Armed 

Forces Personnel,” “T” represents “Terrorist Groups,” and “S” represents “Sites 

Targeted.”  Graphically define the following affect relations.   

 

A1             A2 

 

T1             T2             T3 

 

              S1            S2         S3         S4           S5        S6 

 

By the above Topology Construction Rule, this generates the following 

neighborhoods for the topology:   
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A0 = {{A1}, {A2}, {T1}, {T2}, {T3}, {S1}, {S2}, {S3}, {S4}, {S5}, {S6}} 

D0 = {{A1, A2}, {T1, T2, T3}, {S1, S2, S3, S4, S5, S6}} 

A1 = {{A1, A2}, {A1, T1}, {A1, T2}, {A1, T3}, {A2, T1}, {A2, T2}, {A2, T3}} 

A2 = {{T1, T2}};    A3 = {{T1, S1}, {T1, S2}, {T2, S3}, {T3, S4}, {T3, S5}};    A4 = {{S3, S4}} 

 

 

 

Thus,  

   t = A0  D0  A1  A2  A3  A4  {S, }.     

 

This topology can be easily verified.  And, the construction can be easily 

determined to always result in a topology, since every intersection will result in either a set 

of one element, which is in the topology, or in a set of two elements that is in the topology.   

Now, let’s see what may be determined that may not otherwise be too obvious.  

Granted, given this limited intentional system, this result may be somewhat obvious, but it 

does indicate the power of this analysis given much larger systems.   

Are (T1,S4) and (T1, S5) path-connected?   

The following sequence of neighborhoods determines that both pairs are 

path-connected.   

 

For (T1,S4):    {T1, T2}, {T2, S3}, {S3, S4}.     

For (T1, S5):    {A1, T1}, {A1, A2}, {A2, T3}, {T3, S5}.   

 

 

While, intuitively, it may seem that (T1, S5) are not path-connected due to the 

direction of the arrows; that is, the affect relations, an analysis of the system indicates that 

they are so connected.  This should not be too surprising, since the impact of the “system” 

concept is that elements of the system are in fact responsive to changes in or influences by 

other elements of the system.  This does not mean that “vectored direct affect relations” 

cannot be determined; however, the question here is, do affects by T1 influence, or have an 

effect on, S5?  The answer is “Yes.”  That degree of influence is not yet determined.   
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Now, another result of the above example is to see that an element may be 

connected but not path-connected.  For example, S6 is connected but not path-connected.  

As seen from the example, there are no affect relations connecting S6 to the other elements.  

In the topology, there are only two neighborhoods that contain this element; that is, {S1, S2, 

S3, S4, S5, S6} and {S6}.  They, clearly, are not path-connected.  But, are they connected?  

Yes.  They are connected by the subset {{S1, S2, S3, S4, S5, S6}, {S6}}.  That is, when 

divided into the only two non-empty disjoint parts, then one part contains a point near the 

other, specifically S6.   

This is certainly a desired result in an intentional system.  Since, obviously, a new 

Site Target can be introduced into the system at any time.  Yet, at the time of introduction, 

there may not be any substantive affect relation established.  The topological space must 

allow for that relation to be established.  Of course, at the time of introduction into the 

system, certain affect relations may be established, but, not necessarily those under 

consideration.  Clearly, a behavioral topology can become extremely complex.  That 

complexity is being minimized for the sake of introducing topology as a tool for eventual 

analysis of that system’s complexity.   

Now for a consideration of the vectored direct affect relations.   

The following concepts are derived from Michael Henle’s A Combinatorial 

Introduction to Topology.   

 

A vector field V on a subset D of the plane is a function assigning to each point, P of 

D a vector in the plane with its initial point at P.  “Intuitively, we can think of V as giving 

the velocity of some substance that is presently in D” (p. 33).   

That is, we can think of affect relations as the “substance” being influenced, and the 

vector, V, as that which is giving those relations “velocity” or “impact.”  The vector is that 

which makes the affect relations effective.   

The essential qualities of a vector are its length and direction.  For our purposes, 

“length” can be defined as the “power” or “force” or “degree” of influence or effectiveness 

of the affect relation.  “Direction” can be defined as the recipient of the affect.   

The importance of vectors for intentional systems theory can be seen from the 

following description provided by Henle:   
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“Clearly the study of vector fields on a set D coincides with the study of 

continuous transformations of the set [that is, topology].   

Vector fields have many important applications.  The force fields arising from 

gravitation and electromagnetism are vector fields; the velocity vectors of a fluid in 

motion, such as the atmosphere (wind vectors), form a vector field; and gradients, such as 

the pressure gradient on a weather map or the height gradient on a relief chart, are vector 

fields.  These examples are usually studied from the point of view of differential equations.  

A vector field, V(P) = (F(x,y), G(x,y)), determines a system of differential equations in the 

two unknowns x and y.  These variables are taken to represent the position of a moving 

point in the plane dependent on a third variable, the time t.  The system of differential 

equations takes the form:  x’ = F(x,y), y’ = G(x,y); where the differentiation is with respect 

to t.  Such a system is called autonomous because the right-hand sides are independent of 

time.  A solution of this system consists of two functions expressing x and y in terms of t.  

These may be considered the parametric equations of a path in the plane:  the path of a 

molecule of gas or liquid, the orbit of a planet or an electron, or the trajectory of a marble 

rolling down a hill, depending on the application.  The original vector field V(P) gives the 

tangent vector to the path of motion at the point P = (x,y).”   

 

The “application” here is with respect to the affect relations of an intentional 

system.  Such an application will be required if the full impact of topology is to be realized 

in this study.  And, it will clearly be required in order to introduce the time element that is 

critical to any in-depth analysis of an intentional system.   

 

 
 


